Tìm m để HPT sau :
b,\(\left\{{}\begin{matrix}mx+y=m+1\\x+my=2\end{matrix}\right.\) vô nghiệm
c,\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.cónghiệm\left(x;y\right)thỏamãn:x>0,y< 0\)
d,\(\left\{{}\begin{matrix}mx+y=4\\x-my=1\end{matrix}\right.cónghiệm\left(x;y\right)thỏamãn:x+y=\dfrac{8}{m^2+1}\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{3x+2}{x-1}-\dfrac{3y-1}{y+2}=0\\\dfrac{2}{x-1}+\dfrac{3}{y+2}=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{4x-5}{x+1}+\dfrac{2y-3}{y-5}=8\\\dfrac{3}{x+1}-\dfrac{2}{y-5}=-1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{x+y-2}{x+1}+\dfrac{3-x}{y+1}=\dfrac{5}{4}\\\dfrac{3\left(x+y-2\right)}{x+1}-\dfrac{5-x+2y}{y+1}=\dfrac{3}{4}\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x-y+1}{x-3}+\dfrac{x+1}{y-3}=\dfrac{-7}{2}\\\dfrac{2\left(x-y+1\right)}{x-3}-\dfrac{x+y-2}{y-3}=-\dfrac{9}{2}\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}x^2-y^2+2y=1\\\left(x+y\right)^2-2x-2y=0\end{matrix}\right.\)
f)\(\left\{{}\begin{matrix}4x^2+y^2-4xy=4\\x^2+y^2-2\left(xy+8\right)=0\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2-y\left(x+y\right)+1=0\\\left(x^2+1\right)\left(x+y-2\right)+y=0\end{matrix}\right.\)
Giải phương trình:
1. \(\left\{{}\begin{matrix}5x-2y=-9\\4x+3y=2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x+y-4=0\\x+2y-5=0\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}2x+3y-7=0\\x+2y-4=0\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}5x+6y=17\\9x-y=7\end{matrix}\right.\)
Giải hệ phương trình :
a, \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x^2+4x=5y\\y^2+4y=5x\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x^2+2y^2+xy=4\\2x^2+xy+3y^2=6\end{matrix}\right.\)
e,\(\left\{{}\begin{matrix}4x^2+8x=5y\\y^2+4y=10x\end{matrix}\right.\)
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left|x-2\right|+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{matrix}\right.\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+1+y^2+xy=y\\x+y-2=\frac{y}{1+x^2}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+8y^3-4xy^2=1\\2x^4+8y^4-2x-y=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2+y^2=\frac{1}{5}\\4x^2+3x-\frac{57}{25}=-y\left(3x+1\right)\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\sqrt{12-y}+\sqrt{y\left(12-x\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
Gỉai hệ phương trình đối xứng sau:
a.\(\left\{{}\begin{matrix}x^2+y^2-x-2y=19\\xy\left(x-1\right)\left(y-2\right)=20\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}\left(x^2+1\right)\left(y^2+1\right)+8xy=0\\\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}=-\dfrac{1}{4}\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}x^3-3x^2-9x+22=y^3+3y^2-9y\\x^2+y^2-x+y=\dfrac{1}{2}\end{matrix}\right.\)
Giải HPT
1)\(\left\{{}\begin{matrix}x^2+y^2+z=1\\x^2+y+z^2=1\\x+y^2+z^2=1\end{matrix}\right.\)
2)
\(\left\{{}\begin{matrix}xyz=x+y+z\\yzt=y+z+t\\ztx=z+t+x\\txy=t+x+y\end{matrix}\right.\)
3)
\(\left\{{}\begin{matrix}x^3+y^2=2\\x^2+xy+y^2-y=0\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^2y^2-2x+y^2=0\\2x^2-4x+y^3+3=0\end{matrix}\right.\)