Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Khánh Huyền

\(\left\{{}\begin{matrix}\left(x+y\right)\left(1+xy\right)=18xy\\\left(x^2+y^2\right)\left(1+x^2y^2\right)=208x^2y^2\end{matrix}\right.\)

Nguyễn Việt Lâm
14 tháng 11 2019 lúc 22:55

Nhận thấy \(x=0\Rightarrow y=0\) là 1 cặp nghiệm và ngược lại

Với \(x;y\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy\left(x+y\right)=18xy\\x^2+y^2+x^2y^2\left(x^2+y^2\right)=208x^2y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=18\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=208\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{x}+y+\frac{1}{y}=18\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=212\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=a\\y+\frac{1}{y}=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=18\\a^2+b^2=212\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=18\\\left(a+b\right)^2-2ab=212\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=18\\ab=56\end{matrix}\right.\)

Theo Viet đảo, a và b là nghiệm của:

\(t^2-18t+56=0\Rightarrow\left[{}\begin{matrix}t=4\\t=14\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\frac{1}{x}=4\\y+\frac{1}{y}=14\end{matrix}\right.\\\left\{{}\begin{matrix}x+\frac{1}{x}=14\\y+\frac{1}{y}=4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-4x+1=0\\y^2-14y+1=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-14x+1=0\\y^2-4y+1=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow...\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Nguyễn Thanh Giang
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Trinh Tuyết Na
Xem chi tiết
Vũ Như Quỳnh
Xem chi tiết
vung nguyen thi
Xem chi tiết