\(\left\{{}\begin{matrix}\left(x+y\right)\left(y+z\right)=4xy^2z\\\left(y+z\right)\left(z+x\right)=4yz^2x\\\left(z+x\right)\left(x+y\right)=4zx^2y\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x+y+z=3\\\left(z+y\right)\left(y-3\right)\left(z-3\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2-6x-2y=15\\\left(x^2-3x\right)y=-2\left(z+3\right)\\x^2y^2+2y+12\le4z\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2-\left|x\right|=\left|yz\right|\\y^2-\left|y\right|=\left|zx\right|\\z^2-\left|z\right|=\left|xy\right|\end{matrix}\right.\)
Giải HPT: \(\left[{}\begin{matrix}\sqrt{x}\left(1+y\right)=2y\\\sqrt{y}\left(1+z\right)=2z\\\sqrt{z}\left(1+x\right)2x\end{matrix}\right.\)
Giải hệ:
\(\left\{{}\begin{matrix}x^3-y^3=37\left(x-y\right)\\y^3-z^3=19\left(y-z\right)\\z^3-x^3=28\left(z-x\right)\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2\left(y-z\right)=-\dfrac{5}{3}\left(1\right)\\y^2\left(z-x\right)=3\left(2\right)\\z^2\left(x-y\right)=\dfrac{1}{3}\left(3\right)\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}x\left(y-z\right)=4\\y\left(z-x\right)=9\\z\left(x+y\right)=1\end{matrix}\right.\)
Giải HPT
1)\(\left\{{}\begin{matrix}x^2+y^2+z=1\\x^2+y+z^2=1\\x+y^2+z^2=1\end{matrix}\right.\)
2)
\(\left\{{}\begin{matrix}xyz=x+y+z\\yzt=y+z+t\\ztx=z+t+x\\txy=t+x+y\end{matrix}\right.\)
3)
\(\left\{{}\begin{matrix}x^3+y^2=2\\x^2+xy+y^2-y=0\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^2y^2-2x+y^2=0\\2x^2-4x+y^3+3=0\end{matrix}\right.\)