\(\left(2x^3+3x^2\right)+\left(3+2x\right)=0\)
\(\Leftrightarrow x^2\left(2x+3\right)+\left(3+2x\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x^2+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-\dfrac{3}{2}\)
\(\left(2.x^3+3.x^2\right)+\left(3+2x\right)=0\)
\(x^2.\left(2x+3\right)+\left(3+2x\right)=0\)
\(\left(3+2x\right).\left(x^2+1\right)=0\)
Ta có: \(x^2+1>0\forall x\)
\(\Rightarrow3+2x=0\)
\(\Rightarrow x=-\dfrac{3}{2}\)
Vậy \(x=-\dfrac{3}{2}\)
Tham khảo nhé~