Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
cà thái thành

Lấy điểm O bất kì trên đường thẳng xy. Trên nửa mặt phẳng bờ xy, vẽ tia Oz sao cho xOz = 50o. Trên tia Oy, lấy điểm B. Trên nửa mặt phẳng bờ xy chứa Oz, vẽ Bt sao cho tBy =130o.

a) chứng minh Oz // Bt

b) vẽ Om và Bn sao cho lần lượt là các tia phân giác của xOz và xBt. Chứng minh Om // Bt

làm xong trước tích cho

Vũ Minh Tuấn
7 tháng 10 2019 lúc 20:49

a) Ta có: \(\widehat{tBy}+\widehat{tBO}=180^0\) (vì 2 góc kề bù)

=> \(130^0+\widehat{tBO}=180^0\)

=> \(\widehat{tBO}=180^0-130^0\)

=> \(\widehat{tBO}=50^0.\)

\(\widehat{xOz}=50^0\left(gt\right)\)

=> \(\widehat{tBO}=\widehat{xOz}=50^0\)

Mà 2 góc này nằm ở vị trí đồng vị.

=> \(Oz\) // \(Bt.\)

b) Vì \(Om\) là tia phân giác của \(\widehat{xOz}\left(gt\right)\)

=> \(\widehat{xOm}=\widehat{mOz}=\frac{\widehat{xOz}}{2}=\frac{50^0}{2}=25^0\) (1)

\(Bn\) là tia phân giác của \(\widehat{xBt}\left(gt\right)\)

=> \(\widehat{xBn}=\widehat{nBt}=\frac{\widehat{xBt}}{2}=\frac{50^0}{2}=25^0\) (2)

Từ (1) và (2) => \(\widehat{xOm}=\widehat{xBn}=25^0\)

Mà 2 góc này nằm ở vị trí đồng vị.

=> \(Om\) // \(Bn\left(đpcm\right).\)

Chúc bạn học tốt!

👁💧👄💧👁
7 tháng 10 2019 lúc 16:10

P/s: Câu b thì Om // Bn chứ nhỉ?

Violympic toán 7


Các câu hỏi tương tự
Van kien Le
Xem chi tiết
dấu tên
Xem chi tiết
Lê Ngọc Bảo Trúc
Xem chi tiết
dunglol
Xem chi tiết
pricess
Xem chi tiết
Minz Ank
Xem chi tiết
Minz Ank
Xem chi tiết
Minh Thu Hoàng Nguyễn
Xem chi tiết
33. Diễm Thy
Xem chi tiết