Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
FREESHIP Asistant

Lập phương trình các cạnh ca tam giác ABC biết đỉnh C(3; 5), đường cao và đường trung tuyến kẻ từ một đỉnh có phương trình là: (d1): 5x + 4y - 1 = 0, (d2): 8x + y - 7 = 0

Nguyễn Việt Lâm
7 tháng 3 2022 lúc 0:52

Giao điểm của \(d_1;d_2\) là nghiệm: \(\left\{{}\begin{matrix}5x+4y-1=0\\8x+y-7=0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(\Rightarrow\) Đây là đỉnh A hoặc B (do tọa độ khác tọa độ C)

Không mất tính tổng quát, giả sử \(A\left(1;-1\right)\)

\(\Rightarrow\) Đường cao AH ứng với BC có pt là 5x+4y-1=0

Do AH vuông góc BC nên BC nhận (4;-5) là 1 vtpt

Phương trình BC: 

\(4\left(x-3\right)-5\left(y-5\right)=0\Leftrightarrow4x-5y+13=0\)

\(\overrightarrow{AC}=\left(2;6\right)=2\left(1;3\right)\Rightarrow\) AC nhận (3;-1) là 1 vtpt

Phương trình AC:

\(3\left(x-1\right)-1\left(y+1\right)=0\Leftrightarrow3x-y-4=0\)

B thuộc BC nên tọa độ có dạng: \(\left(b;\dfrac{4b+13}{5}\right)\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{b+3}{2};\dfrac{2b+19}{5}\right)\)

M thuôc trung tuyến \(d_2\) qua A nên:

\(8\left(\dfrac{b+3}{2}\right)+\left(\dfrac{2b+19}{5}\right)-7=0\) \(\Rightarrow b=-2\)

\(\Rightarrow B\left(-2;1\right)\) \(\Rightarrow\overrightarrow{AB}=\left(-3;2\right)\)

Phương trình AB: \(2\left(x+2\right)+3\left(y-1\right)=0\Leftrightarrow2x+3y+1=0\)


Các câu hỏi tương tự
FREESHIP Asistant
Xem chi tiết
Thu Hà Lê
Xem chi tiết
Ngọc Lan
Xem chi tiết
Lê Hoàng Bảo Trâm
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết