\(a,=\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=\sqrt{2}\\ b,=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{5}\\ c,=\dfrac{\sqrt{3}\left(1-\sqrt{2}\right)}{2\left(\sqrt{2}-1\right)}=-\dfrac{\sqrt{3}}{2}\\ d,=\dfrac{\sqrt{5}\left(1-\sqrt{2}\right)}{\sqrt{3}\left(1-\sqrt{2}\right)}=\dfrac{\sqrt{5}}{\sqrt{3}}=\dfrac{\sqrt{15}}{3}\\ e,=\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}+1}=\sqrt{7}\\ f,=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}=\sqrt{5}\\ g,=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}=\sqrt{2}\\ h,=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{5}\)