\(2^{3000}=\left(2^3\right)^{1000}\)= \(8^{1000}\)
\(3^{2000}=\left(3^2\right)^{1000}\)\(=9^{1000}\)
Do \(9^{1000}>8^{1000}\Rightarrow2^{3000}>3^{2000}\)
\(2^{3000}=\left(2^3\right)^{1000}=8^{1000}\)
\(3^{2000}=\left(3^2\right)^{1000}=9^{1000}\)
Mà \(8^{1000}< 9^{1000}\) nên \(2^{3000}< 3^{2000}\)