Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
DƯƠNG PHAN KHÁNH DƯƠNG

KẾT QUẢ CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC .

Giải nhất : Ngô Tấn Đạt . Phần thưởng : Thẻ cào 100k + 30GP

Giải nhì : Hoàng Thảo Linh và Diệp Băng Dao . Phần thưởng : Thẻ cào 50k + 20GP

Giải ba : Truy kích và Luân Đào . Phần thưởng : 15GP

Nhờ thầy @phynit trao giải cho những bạn trên ạ . Cảm ơn các bạn dã ủng hộ cuộc thi của mình . GOOD LUCK !

ĐÁP ÁN VÒNG 3 : " CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC "

Câu 1 :

a ) ĐKXĐ : \(x\ge0\) , \(x\ne25\) , \(x\ne9\)

b )

\(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\dfrac{25-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\left(\dfrac{25-x-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\dfrac{-5}{\sqrt{x}+5}:\left(\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\)

\(=\dfrac{-5}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}+3\right)}{\sqrt{x}+5}\)

\(=\dfrac{-5}{\sqrt{x}+5}\times\dfrac{\sqrt{x}+5}{-\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5}{\sqrt{x}+3}\)

c )

Để biểu thức A nhận giá trị nguyên thì \(5\) phải chia hết cho \(\sqrt{x}+3\)

Ta có : \(Ư\left(5\right)=\left(-5;-1;1;5\right)\) . Mà \(\sqrt{x}+3\ge3\) .

\(\Rightarrow\sqrt{x}+3=5\Rightarrow\sqrt{x}=2\Rightarrow x=4\left(N\right)\)

Vậy \(x=4\) thì biểu thức A nhận giá trị nguyên .

d )

Ta có :

\(B=\dfrac{A\left(x+16\right)}{5}=\dfrac{5\left(x+16\right)}{\dfrac{\sqrt{x}+3}{5}}=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{x-9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\)

Theo BĐT Cô - Si cho hai số không âm ta có :

\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\sqrt{x}+3\times\dfrac{25}{\sqrt{x}+3}}=2\sqrt{25}=10\)

\(\Rightarrow\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\ge10-6=4\)

Dấu \("="\) xảy ra khi \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow\sqrt{x}+3=5\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

Vậy GTNN của \(B\) là 4 khi \(x=4\)

Câu 2 :

a ) \(\left(x^2-x+1\right)\left(x^2+4x+1\right)=6x^2\)

\(\Leftrightarrow x^4+4x^3+x^2-x^3-4x^2-x+x^2+4x+1-6x^2=0\)

\(\Leftrightarrow x^4+3x^3-8x^2+3x+1=0\)

Xét : 0 không phải là nghiệm của phương trình trên .

\(\Leftrightarrow x^2+3x-8+\dfrac{3}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+\left(3x+\dfrac{3}{x}\right)-8=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-10=0\)

Đặt \(x+\dfrac{1}{x}=t\) . Phương trình trở thành :

\(t^2+3t-10=0\)

\(\Delta=9+40=49>0\)

\(\Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{-3+\sqrt{49}}{2}=2\\t_2=\dfrac{-3-\sqrt{49}}{2}=-5\end{matrix}\right.\)

Với \(t_1=2\) :

\(\Leftrightarrow x+\dfrac{1}{x}=2\)

\(\Leftrightarrow\) \(\dfrac{x^2}{x}+\dfrac{1}{x}=\dfrac{2x}{x}\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

Với \(t=-5\) :

\(\Leftrightarrow x+\dfrac{1}{x}=-5\)

\(\Leftrightarrow\) \(\dfrac{x^2}{x}+\dfrac{1}{x}=\dfrac{-5x}{x}\)

\(\Leftrightarrow x^2+5x+1=0\)

\(\Delta=25-4=21>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-5+\sqrt{21}}{2}\\x_2=\dfrac{-5-\sqrt{21}}{2}\end{matrix}\right.\)

Vậy \(S=\left\{1;\dfrac{-5+\sqrt{21}}{2};\dfrac{-5-\sqrt{21}}{2}\right\}\)

b ) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)

\(\Leftrightarrow3\left(x^2+x\right)-2\sqrt{x^2+x}-1=0\)

\(\Leftrightarrow3\left(x^2+x\right)-3\sqrt{x^2+x}+\sqrt{x^2+x}-1=0\)

\(\Leftrightarrow3\sqrt{x^2+x}\left(\sqrt{x^2+x}-1\right)+\left(\sqrt{x^2+x}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+x}-1\right)\left(3\sqrt{x^2+x}+1=0\right)\)

\(\) \(\Leftrightarrow\left(\sqrt{x^2+x}-1\right)=0\) . Vì \(3\sqrt{x^2+x}+1>0\)

\(\Leftrightarrow x^2+x-1=0\)

\(\Delta=1+4=5>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-1+\sqrt{5}}{2}\\x_2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy ..............................

c )

\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\) ( ĐK : \(x\ge-1\) )

\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}-2x-\sqrt{\left(x+1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(\sqrt{x+3}-2x\right)\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x}+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy......................

d ) \(x^2+9x+20=2\sqrt{3x+10}\) ( ĐK : \(x\ge-\dfrac{10}{3}\) )

\(\Leftrightarrow\left(x^2+6x+9\right)+\left(3x+10-2\sqrt{3x+10}+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{3x+10}-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{3x+10}=1\end{matrix}\right.\Leftrightarrow x=-3\)

Vậy...............................

Câu 3 :

a )

\(VT=\dfrac{\sqrt{\dfrac{abc+4}{a}-4\sqrt{\dfrac{bc}{a}}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{abc+4}{a}-\dfrac{4\sqrt{abc}}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{abc+4-4\sqrt{abc}}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{\left(\sqrt{abc}-2\right)^2}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\dfrac{\sqrt{abc}-2}{\sqrt{a}}}{\sqrt{abc}-2}=\dfrac{1}{\sqrt{a}}\left(đpcm\right)\)

b )

Nếu trong \(a+bc;b+ca;c+ab\) không có số nào lớn hơn 1 thì giá trị của mỗi số hạng củaVT ít nhất là \(\dfrac{1}{3}\)

Nếu trong \(a+bc;b+ca;c+ab\) có một số lớn hơn 1 khi đó : \(c=\dfrac{1-ab}{a+b}\)\(a+b< 1\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{2a+2bc+1}+\dfrac{1}{2b+2ca+1}\ge\dfrac{4}{2a+2b+2bc+2ca+2}=\dfrac{2}{a+b+2-ab}\)

Khi đó ta cần chứng minh :

\(\dfrac{2}{2+a+b-ab}+\dfrac{1}{2c+2ab+1}\ge1\)

Hay :\(\dfrac{2}{a+b-ab+2}+\dfrac{a+b}{a+b-2ab+2ab\left(a+b\right)+2}\ge1\)

Ta có :

\(VT=\dfrac{4+4\left(a+b\right)-4ab+3ab\left(a+b\right)+\left(a+b\right)^2}{\left(2+a+b-ab\right)\left(2+a+b-2ab+2ab\left(a+b\right)\right)}\)

Đặt \(S=a+b< 1;P=ab\) . Ta cần chứng minh :

\(\dfrac{4+4S-4P+3SP+S^2}{4S-6P+3SP+S^2+2S^2P-2P^2+2SP^2+4}\ge1\)

\(\Leftrightarrow2P\ge2S^2P-2P^2+2S^2P\)

\(\Leftrightarrow2P\left(1-S\right)\left(P+S+1\right)\ge0\) ( Đúng vì \(S< 1\) )

Dấu \("="\) xảy ra khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoàn vị .

Câu 4 :

A B C H D E

a )

Tứ giác ADHE có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^0\)

\(\Rightarrow ADHE\) là hình chữ nhật .

\(\Rightarrow\widehat{AED}=\widehat{HAE}\)

Ta lại có : \(\widehat{HAE}=\widehat{ABC}\) ( Cùng phụ với góc C )

\(\Rightarrow\widehat{AED}=\widehat{ABC}\)

Xét \(\Delta AED\)\(\Delta ABC\) ta có :

\(\left\{{}\begin{matrix}\widehat{A}:Chung\\\widehat{AED}=\widehat{ABC}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AED\sim\Delta ABC\left(g-g\right)\)

b )

Ta có : \(\left\{{}\begin{matrix}S_{ADE}=\dfrac{1}{2}S_{ADHE}\\S_{ABC}=2S_{ADHE}\end{matrix}\right.\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}}=\dfrac{1}{4}\)

Mặt khác : \(\Delta ADE\sim\Delta ABC\) ( Câu a )

\(\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{DE}{BC}\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\) \(\dfrac{DE}{BC}=\dfrac{1}{2}\Rightarrow DE=\dfrac{1}{2}BC\)

Gọi M là trung điểm của BC .

\(\Delta ABC\) vuông tại A . \(\Rightarrow AM=\dfrac{1}{2}BC\)

\(\Rightarrow DE=AM\)

\(AH=DE\) ( Do ADHE là hình chữ nhật )

\(\Rightarrow AM=AH\) ( Đường trung tuyến cũng là đường cao )

\(\Rightarrow\Delta ABC\) vuông cân tại A ( đpcm )

Câu 5 :

Ta có :

\(\left\{{}\begin{matrix}2011+y^2=y^2+xy+yz+zx=\left(x+y\right)\left(y+z\right)\\2011+z^2=z^2+xy+yz+zx=\left(x+z\right)\left(y+z\right)\\2011+x^2=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\end{matrix}\right.\)

\(\Rightarrow Q=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\dfrac{\left(x+y\right)\left(x+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=2\left(xy+yz+zx\right)=2.2011=4022\)

Luân Đào
25 tháng 6 2018 lúc 11:19

bucminh

Team lớp A
25 tháng 6 2018 lúc 12:30

Mi kết liễu đời ta đii :v

Hà Đức Thọ
25 tháng 6 2018 lúc 12:43

Cảm ơn em đã tổ chức cuộc thi này.

Thầy sẽ liên hệ với các bạn đạt giải để trao thưởng.

Luân Đào
25 tháng 6 2018 lúc 14:54

Ngô Tấn Đạt 10k ?? haha ??

Nhật Minh
25 tháng 6 2018 lúc 16:23

Bài 3b

đọc còn trả hiểu nữa là làm.

Nhật Minh
25 tháng 6 2018 lúc 16:30

ĐÁp án 3b mình thấy vô lí

a+bc; b+ac ;c+ab có 1 số lớn hơn 1 ( với kết quả tìm được thì số nào lớn hơn 1?)

Nguyễn Thị Diễm Quỳnh
25 tháng 6 2018 lúc 18:18

Chúc mừng các bạn nhé

Hoàng Thảo Linh
25 tháng 6 2018 lúc 19:36

Nếu nộp sớm là đc r. Tiếc quá gianroi

Shinichi Kudo
26 tháng 6 2018 lúc 9:16

bất công qá đi à, tải ảnh r bị lỗi :vkhocroi

~~~~~~đắng~~~~~~

Trần Minh Hoàng
26 tháng 6 2018 lúc 10:26

Này cái bạn giải Nhất ơi cho tui cái thẻ cào đi

Nhật Minh
26 tháng 6 2018 lúc 13:41

Các CTV chú ý chấm bài cho đúng . mấy bạn kia không có ai làm đúng bài 3b nhé . Bài của truy kích còn tạm.

Nhật Minh
26 tháng 6 2018 lúc 14:41

Violympic toán 9

o lala

Trần Quốc Lộc
27 tháng 6 2018 lúc 18:41

Thắc mắc: Cuộc thi dành cho học sinh lớp 8 hay lớp 9?


Các câu hỏi tương tự
ghdoes
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Trần Diệp Nhi
Xem chi tiết
Big City Boy
Xem chi tiết
Linh An Trần
Xem chi tiết
bùi hoàng yến
Xem chi tiết
Trung Trương Gaming
Xem chi tiết
Trúc Nguyễn
Xem chi tiết