\(I=\int\dfrac{lnx}{x\sqrt{1+lnx}}dx\)
Đặt \(\sqrt{1+lnx}=t\Rightarrow lnx=t^2-1\Rightarrow\dfrac{dx}{x}=2t.dt\)
\(\Rightarrow I=\int\dfrac{\left(t^2-1\right)}{t}.2tdt=\int\left(2t^2-2\right)dt=\dfrac{2t^3}{3}-2t+C\)
\(\Rightarrow I=\dfrac{2\left(1+lnx\right)\sqrt{1+lnx}}{3}-2\sqrt{1+lnx}+C\)