\(x^2+2x-8=0\)
\(\left(x^2+2.x.1+1^2\right)-9=0\)
\(\left(x+1\right)^2=9\)
\(\Leftrightarrow\left(x+1\right)=\pm\sqrt{9}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=3\\x+1=-3\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-4\end{array}\right.\)
Theo định lí Viet ta có :
\(x_1+x_2=x\)
\(\Leftrightarrow x_1+x_2=-\frac{b}{a}\)
\(\Rightarrow x_1+x_2=-x\)
\(\Rightarrow x_1+x_2=-2\)
\(\Rightarrow x=2\)
\(x_1.x_2=\frac{x}{2}\)
\(x_1.x_2=\frac{c}{a}\)
\(x_1.x_2=-8\)
\(\Rightarrow x=-\frac{8}{2}=-4\)