\(P=\dfrac{\sqrt{x}}{2\sqrt{x}-3}\)
\(\Leftrightarrow2P=\dfrac{2\sqrt{x}}{2\sqrt{x}-3}=1+\dfrac{3}{2\sqrt{x}-3}\)
Để \(P\in Z\) hay \(2P\in Z\) <=> \(\dfrac{3}{2\sqrt{x}-3}\in Z\)
Có \(x\in Z\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}\in Z^+\\\sqrt{x}\in I\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}-3\in Z\\2\sqrt{x}-3\in I\end{matrix}\right.\)
Trường hợp \(2\sqrt{x}-3\in I\) => \(\dfrac{3}{2\sqrt{x}-3}\notin Z\forall x\) thỏa mãn đk (L)
Trường hợp \(2\sqrt{x}-3\in Z\)
Để \(\dfrac{3}{2\sqrt{x}-3}\in Z\) <=> \(2\sqrt{x}-3\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;2;0;3\right\}\) mà \(\sqrt{x}>0;\sqrt{x}\ne2\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)
Vậy...
(Kí hiệu I là số vô tỉ)