Từ điểm A nằm ngoài đường tròn (O;R), kẻ các tiếp tuyến AB,AC với đường tròn (O), (B,C là các tiếp điểm). Vẽ đường kính BD của đtròn (O), AD cắt đtròn (O) ở E (E≠D). Gọi H là giao điểm của AO và BC
a/ CM 4 điểm A,B,O,C cùng thuộc 1 đtròn và AO vuông với BC tại H
b/ CM AE.AD=AH.AO
c/ Gọi I là trung điểm của HA. CM △AIB đồng dạng với △BH
Giúp mình với ạ!!!!!!
Cho đường tròn (O;R). Từ điểm A ngoài đường tròn kẻ các tiếp tuyến AB,AC với đường tròn (B,C là tiếp điểm). Gọi H là giao điểm của AO và BC
a) Cm: AO vuông góc với BC tại H
b) Vẽ đường kính BD của (O), cm: DC song song AO
c) AD cắt (O) tại E (E khác D). CM AE.AD=AH.AO
d) Qua vẽ đường thẳng vuông góc với AB. Đường thẳng này cắt OC tại F. CM: OA^2 = 2OC.OF
Cho A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB,AC với đường tròn O có B,C là tiếp điểm
a)Cm AO vuông góc BC
b)Trên cung nhỏ BC lấy điểm M bất kì(M khác B,C,OA).Điểm M cắt AB và AC tại D và E.Cm chu vi tam giác ADE=2AB
c)Đường thẳng vuông góc AO tại O cắt AB,AC tại P và Q.CM 4PD.QE=PQ.PQ
Từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AM với đường tròn (M là tiếp điểm). Kẻ dây MN vuông góc với AO tại H. Kẻ đường thẳng đi qua A cắt đường tròn tại B,C(điểm B nằm giữa A và C). Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại K, gọi I là trung điểm của BC. a) Chứng minh 4 điểm B,C,O,K cùng thuộc một đường tròn. b) Chứng minh AN là tiếp tuyến của đường tròn (O) c) Chứng minh OI.OK=ON² d) Chứng minh M,N,K thẳng hàng.
Từ điểm M nằm ngoài đường tròn(O;R) sao cho OM =2R. Kẻ hai tiếp tuyến MA,MB với đường tròn(O;R) (A,B là các tiếp điểm). Đoạn thảng MO cắt đường tròn (O;R)tại P và cắt AB tại H. Tia AO cắt đường tròn (O;R) tại D và cắt tia MB tại K. Nối PK cắt BD tại G
a)CM 4 điểm M,A,O,B cùng nằm trên đường tròn
b) CM MO//BD
c) CM OG vuông góc với BD
d)Từ trung điểm I của AH vẽ đường thẳng vuông góc với AO cắt đường tròn (O;R) tại Q và J. CM MO là tiếp tuyến của (A;AQ)
Cho (O;R) và một điểm A nằm ngoài đường tròn sao cho OA=2R. Các tiếp tuyến AB, AC( B, C là các tiếp điểm). Gọi H là giao điểm của OA với BC, AO cắt cung nhỏ BC tại H và cung lớn BC tại N. a/ chứng minh OA vuông góc với AC và R^2=OA*HM. b/ vẽ các tiếp tuyến bất kì A, D, E. Gọi K là trung điểm của DE. Chứng minh 5 điểm A, B, O, K, C thuộc một đường tròn
Cho đường tròn (O; R) và đường thẳng xy không có điểm chung với đường tròn. Lấy một điểm A bất kì thuộc xy. Từ A kẻ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm). Qua B kẻ đường thẳng vuông góc với AO, cắt AO tại K và cắt đường tròn (O) tại điểm thứ hai là C. b. Chứng minh rằng: AC là tiếp tuyến của đường tròn (O). c. Kẻ OH vuông góc với xy tại H, BC cắt OH tại I. Chứng minh rằng khi A di chuyển trên đường thăng xy thì độ dài đoạn thắng OI không đổi.