Cho hình thoi ABCD có O là giao điểm của 2 đường chéo. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = CN = CP = QA. Cm:
a) Tứ giác BMDP là hình bình hành.
b) 3 điểm N, O, Q thẳng hàng.
c) Tứ giác MNPQ là hình chữ nhật.
(Mình đang cần gấp các bạn giúp mình nha)
Bài 1. Cho hình thoi ABCD . Trên hai cạnh BC , CD lần lượt lấy hai điểm M và N sao cho
BM DN . Gọi P Q ; | thứ tự là giao điểm của AM và AN với đường chéo BD . Chứng minh rằng: |
1.1. BAM DAN | 1.2.Tứ giác APDQ là hình thoi. |
Bài 1. Cho hình thoi ABCD . Trên hai cạnh BC , CD lần lượt lấy hai điểm M và N sao cho
BM DN . Gọi P Q ; | thứ tự là giao điểm của AM và AN với đường chéo BD . Chứng minh rằng: |
1.1. BAM DAN | 1.2.Tứ giác APDQ là hình thoi. |
Bài 2. Cho hình bình hành ABCD có AB AC . Gọi I là trung điểm của BC , trên tia AI lấy điểm
E sao cho I là trung điểm của AE .
2.1. Chứng minh ABEC là hình thoi.
2.2. Chứng minh D C E ; ; thẳng hàng.
2.3. Tính số đo DAE
Bài 3. Cho hình bình hành ABCD có AB bằng đường chéo AC . Gọi O là trung điểm của BC trên tia
AO lấy điểm E sao cho O là trung điểm của AE . Đường thẳng vuông góc với AE tại E cắt AC tại
F.
3.1. Chứng minh ABEC là hình thoi
3.2. Chứng minh tứ giác ADFE là hình chữ nhật
3.3. Vẽ AI CD tại I . Chứng minh rằng nếu AI AO thì AC BD và ABO 60
Bài 4. Cho hình bình hành ABCD .Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho
AM DN . Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F.
4.1. Chứng minh AB là đường trung trực của EF .
4.2. Chứng minh tứ giác MEBF là hình thoi.
4.3. Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
Bài 5. Cho tam giác ABC cân tại A. Đường trung tuyến AM , trên tia AM lấy điểm D sao cho M là
trung điểm của AD .Gọi K là trung điểm của MC ,trên tia DK lấy điểm E sao cho K là trung điểm của
ED .
5.1. Chứng minh tứ giác ABDC là hình thoi .
5.2. Chứng minh tứ giác AMCE là hình chữ nhật.
5.3. Gọi I là giao điểm của AM và BE . Chứng minh I là trung điểm của BE .
5.4. Chứng minh rằng: AK ; CI ; EM đồng quy.
Bài 10: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC.
a) Tứ giác AEDF là hình gì? Vì sao?
b) Chứng minh: AE = EB, AF = FC.
c) Các tứ giác ADBM, ADCN là hình gì? Vì sao?
d) Chứng minh rằng M đối xứng với N qua
Hình thoi ABCD có \(\widehat{A}=60^0\). Trên cạnh AD lấy điểm M, trên cạnh DC lấy điểm N sao cho AM = DN. Tam giác BMN là tam giác gì ? Vì sao ?
Cho ABC vuông tại A có . Gọi D, E lần lượt là trung điểm của các
cạnh BC và AC.
a/ Tính độ dài DE và AD, biết BC = 5cm, AC = 4cm.
b/ Lấy điểm F đối xứng với D qua AC, chứng minh rằng ADCF là hình thoi.
Cho hình bình hành ABCD có AB= 2AD.Gọi M, N theo thứ tự là trung điểm của CD và AB.
a) Tứ giác ANMD là hình gì? Vì sao?
b) Kẻ BH vuông góc với AD, H thuộc AD. Biết góc ADC = 70 độ , tính số đo góc HMC.
vẽ hình và lời giải giúp mik chiều nay mik nộp r
Bài 10: Cho hình thoi ABCD có hat A =60^ .Kẻ BH vuông góc với AD tạiH .Lấy E thuộc tia BH sao cho BH = HE Nối EA và ED . Chứng minh rằng: a) H là trung điểm của AD b) Tứ giác ABDE là hình thoi c) D là trung điểm của CE d) AC = BE .