Xét \(\Delta ABD\) và \(\Delta BCD\) ta có :
\(\widehat{ABD}=\widehat{BDC}\) ( so le trong ) (1)
\(\widehat{ABD}=\widehat{ADB}\) ( Tam giác ABD cân tại A ) (2)
\(\widehat{ADB}=\widehat{DBC}\) ( so le trong ) (3)
\(\widehat{DBC}=\widehat{DCB}\) ( Tam giác DCB cân tại D ) (4)
Từ (1) ; (2) ; (3) ;(4) :
\(\Rightarrow\widehat{BDC}=\widehat{DBC}=\widehat{DCB}\)
\(\Rightarrow\Delta DBC\) là tam giác đều .
\(\Rightarrow\widehat{BDC}=\widehat{DBC}=\widehat{DCB}=60^0\)
\(\Rightarrow\widehat{ABC}=180^0-\widehat{DCB}=180^0-60^0=120^0\)
\(\widehat{ADC}=\widehat{BCD}=60^0\)
\(\Rightarrow\widehat{DAB}=180-\widehat{ADC}=180-60=120^0\)
Vậy : \(\widehat{A}=\widehat{B}=120^0\) ; \(\widehat{C}=\widehat{D}=60^0\)