\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
=\(xy^2-xz^2+yz^2-x^2y+zx^2-zy^2\)
=\(-xy\left(x-y\right)-z^2\left(x-y\right)+z\left(x^2-y^2\right)\)
=\(\left(-xy-z^2\right)\left(x-y\right)+z\left(x-y\right)\left(x+y\right)\)
\(=\left(-xy-z^2+zx+zy\right)\left(x-y\right)\)
=[-x(y-z)+z(y-z)](x-y)
=(z-x)(y-z)(x-y)
\(z\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
\(y^2z-z^3+yz^2-x^2y+x^2z-y^2z\)
\(-z^3yz^2-x^2y+x^2z\)