\(x-1>0\Rightarrow x>1\)
Xét \(f\left(x\right)=x^2-2mx+1\le0\)
Do \(a=1>0\), để BPT có nghiệm thì
TH1: \(\left\{{}\begin{matrix}\Delta'=0\\-\frac{b}{2a}>1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-1=0\\m>1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
TH2: \(f\left(x\right)=0\) có 2 nghiệm pb và ít nhất 1 nghiệm lớn hơn 1
\(\Delta'=m^2-1>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
Để \(f\left(x\right)=0\) có 2 nghiệm thỏa \(x_1< x_2\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2-2m\ge0\\2m< 2\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Vậy BPT đã cho có nghiệm khi \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)