tình nhanh
\(B=\dfrac{\left(\dfrac{1}{14}-\dfrac{\sqrt{2}}{7}+\dfrac{3\sqrt{2}}{35}\right).\left(-\dfrac{4}{15}\right)}{\left(\dfrac{1}{10}+\dfrac{3\sqrt{2}}{25}-\dfrac{\sqrt{2}}{5}\right).\dfrac{5}{7}}\)
Thực hiện phép tính (tính nhanh nếu có thể):
4) \(4\cdot\left(\dfrac{-1}{2}\right)^3+\left|-1\dfrac{1}{2}+\sqrt{\dfrac{9}{4}}\right|:\sqrt{25}\)
5) \(\left[6-3\cdot\left(\dfrac{-1}{3}\right)^2+\sqrt{\dfrac{1}{4}}\right]:\sqrt{0,\left(9\right)}\)
Bài 1Trong các số sau đây số nào bằng \(\dfrac{3}{5}\)
a,\(\sqrt{\dfrac{3^2}{5^2}}\)
b,\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
c,\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}\)
Bài 2
a, \(x=\sqrt{3}+\sqrt{6}\)
\(y=2\sqrt{3}\)
b,\(x=\sqrt{3}+\sqrt{6}\)
\(y=\sqrt{2}+\sqrt{7}\)
c,\(x=-\dfrac{1}{2}\sqrt{\dfrac{1}{3}}\)
\(y=-\dfrac{1}{3}\sqrt{\dfrac{1}{2}}\)
Bài 3
\(a,\sqrt{x}-1=4\)
\(b,\sqrt{\left(x-1\right)^4}=16\)
Thực hiện phép tính (tính nhanh nếu có thể):
a) \(\left(\dfrac{1}{2}-\dfrac{1}{3}\right)-\left(\dfrac{5}{3}-\dfrac{3}{2}\right)+\left(\dfrac{7}{3}-\dfrac{5}{2}\right)\)
b) \(\left(\dfrac{3}{4}-1\dfrac{1}{6}\right)^2:\sqrt{\dfrac{25}{144}}\)
Tính:
a) \(\sqrt{27}+\sqrt{75}-\sqrt{\dfrac{1}{3}}\)
b) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
c) \(\dfrac{3}{\sqrt{7}+\sqrt{2}}+\dfrac{2}{3+\sqrt{7}}+\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)
hãy sắp xếp theo thứ tự tăng dần :
\(\dfrac{-7}{9}\) ; \(\dfrac{3}{2}\) ; \(\dfrac{-7}{5}\); 0 ; \(\dfrac{4}{5}\) ; \(\dfrac{9}{11}\)
Tính:
\(\left(\sqrt{8}-2\sqrt{32}+3\sqrt{50}\right)+\left(\dfrac{1}{3+2\sqrt{2}}-\dfrac{1}{3-2\sqrt{2}}\right)\)
Chứng minh rằng :\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}\)>10
Rút gọn:
\(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)
Tính A với \(a=3+2\sqrt{2}\)