Lời giải:
\(\frac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+3^8+3^{10}+3^{12}+3^{14}}=\frac{1+3^4+3^8+3^{12}}{(1+3^4+3^8+3^{12})+(3^2+3^6+3^{10}+3^{14})}\)
\(=\frac{1+3^4+3^8+3^{12}}{(1+3^4+3^8+3^{12})+3^2(1+3^4+3^{8}+3^{12})}\)
\(=\frac{1+3^4+3^8+3^{12}}{(1+3^2)(1+3^4+3^8+3^{12})}=\frac{1}{1+3^2}=\frac{1}{10}\)
Lời giải:
\(\frac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+3^8+3^{10}+3^{12}+3^{14}}=\frac{1+3^4+3^8+3^{12}}{(1+3^4+3^8+3^{12})+(3^2+3^6+3^{10}+3^{14})}\)
\(=\frac{1+3^4+3^8+3^{12}}{(1+3^4+3^8+3^{12})+3^2(1+3^4+3^{8}+3^{12})}\)
\(=\frac{1+3^4+3^8+3^{12}}{(1+3^2)(1+3^4+3^8+3^{12})}=\frac{1}{1+3^2}=\frac{1}{10}\)