Biết hàm số \(y=ax^2+2x+b\) có giá trị lớn nhất là 4 , đồng biến trên khoảng \(\left(-\infty;1\right)\) và nghịch biến trên khoảng \(\left(1;+\infty\right)\) . Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng:
A. 3. B. . C. 1 . D. .
Với giá trị nào của m thì hàm số sau nghịch biến trên tập xác định :
a, y = (m-2)x + 5
b, y = (m+1)x+m-2
Tìm tất cả các giá trị m để hàm số y= -x^2+2|m-1|x-3 nghịch biến trên (2;+\(\infty\))
Với giá trị nào của m thì hàm số đồng biến? nghịch biến?
a, y = (2m+3)x-m+1
b, y = (2m+5)x+m+3
c, y = mx-3-x
d, y = m(x+2)
xét tính đồng biến - nghịch biến của hàm số : y = \(\frac{2x+1}{x-1}\) trên ( 1 ; dương vô cực )
bài 1 xét tính đồn biến và nghịch biến của các hàm số
a) y= -\(\dfrac{1}{x+1}\) trên (-3;-2) và (2;3)
bài 2 xác định tính chẵn lẻ của hàm số
a) y= \(\dfrac{x^5}{\left|x\right|^3-1}\)
b) y= \(\left|x+2\right|\)-\(\left|x-2\right|\)
c) y= \(\sqrt{x+1}\)+\(\sqrt{1-x}\)
d) y=\(\dfrac{x^4+2x^2+1}{x}\)
e) y= \(x^2\)+x+1
f) y=\(\left(x+2\right)^2\)
Xét tính đồng biến và nghịch biến của hàm số \(y=f\left(x\right)=x^2+10x+9trên\left(-5;+\infty\right)\)
helpp mee, please
Cho hàm số y=x³+mx²+2mx+3. Tìm điều kiện của m để hàm số đồng biến trên khoảng (0;2).
cho em hỏi y' là sao ạ em ko hiểu bài này
Dùng định nghĩa xét tính đơn điệu của hàm số y=\(\dfrac{m+1}{x}\) đồng biến trên từng khoảng xác định.
cho hàm số bậc nhất : y = f(x) = (m -1)x +2m +1 (dm).
Khảo sát và vẽ đồ thị hàm số khi m = 2.Tìm m để đồ thị hàm số (dm) đi qua điểm A(4, -1).Tìm m để hàm số nghịch biến trên tập xác định.Tìm điểm cố định của đồ thị hàm số (dm) đi qua.