Ta có : A+B+C= 180
=>sin(A+B)/2 = sin(180/2 - C/2) = cosC/2
ttcó: sinC/2 = cos(A+B)/2
=> sA+sB+sC =2cosC/2*cos(A-B)/2 + 2cos(A+B)/2*cosC/2
=2cosC/2
=4cosA/2cosB/2cosC/2
Ta có : A+B+C= 180
=>sin(A+B)/2 = sin(180/2 - C/2) = cosC/2
ttcó: sinC/2 = cos(A+B)/2
=> sA+sB+sC =2cosC/2*cos(A-B)/2 + 2cos(A+B)/2*cosC/2
=2cosC/2
=4cosA/2cosB/2cosC/2
4) Cho △ABC. Đẳng thức nào \(Sai\) ?
\(A.\sin\left(A+B-2C\right)=\sin3C\)
\(B.\cos\dfrac{B+C}{2}=\sin\dfrac{A}{2}\)
\(C.\sin\left(A+B\right)=\sin C\)
\(D.\cos\dfrac{A+B+2C}{2}=\sin\dfrac{C}{2}\)
2) Cho △ABC thỏa mãn hệ thức \(b+c=2a\). Mệnh đề nào trong các mệnh đề sau đúng?
\(A.\cos B+\cos C=2\cos A\)
\(B.\sin B+\sin C=2\sin A\)
\(C.\sin B+C=\dfrac{1}{2}\sin A\)
\(D.\sin B+\cos C=2\sin A\)
1) Cho △ABC. Khẳng định nào đúng?
\(A.S_{\Delta ABC}=\dfrac{1}{2}a.b.c\)
\(B.\dfrac{a}{\sin A}=R\)
\(C.\cos B=\dfrac{b^2+c^2-a^2}{2bc}\)
\(D.m_c^2=\dfrac{2b^2+2a^2-c^2}{4}\)
Cho tam giác ABC có b = 7 ,c = 5 và cos A = \(\dfrac{3}{5}\). Tính a , sin A, diện tích S của ABC, R, r, ha
Chứng minh rằng trong tam giác ABC ta có các hệ thức :
a) \(\sin A=\sin B\cos C+\sin C\cos B\)
b) \(h_a=2R\sin B\sin C\)
Cho P = \(\dfrac{\cot x}{\cos x}-\dfrac{\cos x}{\tan x}\). Hãy chọn kết quả đúng:
A. P không phụ thuộc vào x
B. P = \(\sin x\)
C. P = \(\cos x\)
D. P = tan x
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B.\sin C}\)
Tam giác ABC có \(b+c=2a\). Chứng minh rằng :
a) \(2\sin A=\sin B+\sin C\)
b) \(\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
chứng minh nếu tam giác ABC có 3 góc A , B , C và 3 cạnh a , b , c thỏa mãn đẳng thức sau thì tam giác ABC vuông : \(\frac{b}{\cos B}\) + \(\frac{c}{\cos C}\) = \(\frac{a}{\sin B\times\sin C}\)