a)
\(\left|x+7\right|=2x+5\\ \Rightarrow\left(x+7\right)^2=\left(2x+5\right)^2\\ \left(x+7\right)^2-\left(2x+5\right)^2=0\\ \left(x+7+2x+5\right)\left(x+7-2x-5\right)=0\\ \left(3x+12\right)\left(2-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+12=0\\2-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
vậy phương trình đã cho có tập nghiệm là S={-4;2}
b)
\(\left|3x-4\right|-2x=1\\ \left|3x-4\right|=1+2x\\ \left(3x-4\right)^2-\left(1+2x\right)^2=0\\ \left(3x-4+1+2x\right)\left(3x-4-1-2x\right)=0\\ \left(5x-3\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}5x-3=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=5\end{matrix}\right.\)
vậy phương trình đã cho có tập nghiệm là S={3/5;5}
c)
\(5.\left|1-4x\right|=10x-5\\ \left|1-4x\right|=\dfrac{10x-5}{5}=2x-1\\ \Rightarrow\left(1-4x\right)^2-\left(2x-1\right)^2=0\\ \left(1-4x+2x-1\right)\left(1-4x-2x+1\right)=0\\ -2x\left(-6x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\-6x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
vậy phương trình đã cho có tập nghiệm là S={0;3}
d)
\(\left|2x+3\right|=12-6x\\ \left(2x+3\right)^2-\left(12-6x\right)^2=0\\ \left(2x+3+12-6x\right)\left(2x+3+6x-12\right)=0\\ \left(15-4x\right)\left(8x-9\right)=0\\ \Rightarrow\left[{}\begin{matrix}15-4x=0\\8x-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{4}\\x=\dfrac{9}{8}\end{matrix}\right.\)
vậy phương trình đã cho có tập nghiệm là S={15/4;9/8}
a) \(\left|x+7\right|=2x+5\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+7=2x+5\\x+7=-2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
b)\(\left|3x-4\right|=2x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=2x+1\\3x-4=-2x-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=\dfrac{3}{5}\end{matrix}\right.\)
c)\(\left|1-4x\right|=2x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-4x=2x-1\\1-4x=1-2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\x=0\end{matrix}\right.\)
d)\(\left|2x+3\right|=12-6x\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3=12-6x\\2x+3=6x-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{15}{4}\end{matrix}\right.\)