\(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}\)
\(=\dfrac{1}{5}.\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{99}\right).\dfrac{1-\left(3+5+...+49\right)}{89}\)
\(=\dfrac{1}{5}.\left(\dfrac{1}{4}-\dfrac{1}{49}\right).\dfrac{1-\dfrac{\left(3+49\right).\left[\left(49-3:2+1\right)\right]}{2}}{89}\)
\(=\dfrac{1}{5}.\dfrac{45}{196}.\dfrac{1-\dfrac{52.24}{2}}{89}\)
\(=\dfrac{9}{196}.\dfrac{1-\dfrac{1248}{2}}{89}\)
\(=\dfrac{9}{196}.\dfrac{1-624}{89}\)
\(=\dfrac{9}{196}.\left(-\dfrac{623}{89}\right)\)
\(=-\dfrac{9}{28}\)