Chương 1: VECTƠ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
luu thi phuong

giúp mình với nhá

cho hình bình hành abcd có tâm o. hãy xác định các điểm i,f,k thỏa mãn đẳng thức :

a) vecto IA+ vecto IB + vecto IC =4 vecto ID

b) 2vecto FA +2 vecto FB = 3 vecto FC - vecto FD

c)4 vecto KA +3 vecto KB +2 vecto KC + vecto KD = vecto 0

Akai Haruma
28 tháng 8 2017 lúc 1:17

Lời giải:

Ta biết một vài tính chất của hình bình hành có tâm $O$:

\(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}=0\)

a) Ta có:

\(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=4\overrightarrow{ID}\)

\(\Leftrightarrow \overrightarrow{IO}+\overrightarrow{OA}+\overrightarrow{IO}+\overrightarrow{OB}+\overrightarrow{IO}+\overrightarrow{OC}=4\overrightarrow{IO}+4\overrightarrow{OD}\)

\(\Leftrightarrow \overrightarrow{OB}=\overrightarrow{IO}+4\overrightarrow{OD}\Leftrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{IO}+3\overrightarrow{OD}\)

\(\Leftrightarrow{DB}-3\overrightarrow{OD}=\overrightarrow{IO}\)

\(\Leftrightarrow 2\overrightarrow{DO}-3\overrightarrow{OD}=\overrightarrow{IO}\)

\(\Leftrightarrow 5\overrightarrow{DO}=\overrightarrow{IO}\)

Do đó điểm $I$ nằm trên đường thẳng $DO$ sao cho $IO=5DO$

b)

\(2\overrightarrow{FA}+2\overrightarrow{FB}=3\overrightarrow{FC}-\overrightarrow{FD}\)

\(\Leftrightarrow 2\overrightarrow{FO}+2\overrightarrow{OA}+2\overrightarrow{FO}+2\overrightarrow{OB}=3\overrightarrow{FO}+3\overrightarrow{OC}-(\overrightarrow{FO}+\overrightarrow{OD})\)

\(\Leftrightarrow 2\overrightarrow{FO}+2\overrightarrow{OA}-3\overrightarrow{OC}+2\overrightarrow{OB}+\overrightarrow{OD}=0\)

\(\Leftrightarrow 2\overrightarrow{FO}+5\overrightarrow{OA}+\overrightarrow{OB}=0\)

Lấy điểm $I$ thỏa mãn \(5\overrightarrow{IA}+\overrightarrow{IB}=0\)

\(\Rightarrow 2\overrightarrow{FO}+5\overrightarrow{OI}+5\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}=0\)

\(\Leftrightarrow 2\overrightarrow{FO}+6\overrightarrow{OI}=0\Rightarrow \overrightarrow {OF}=3\overrightarrow {OI}\)

Điểm I thỏa mãn nằm trên đoạn $AB$ sao cho $5IA=IB$

Điểm F thỏa mãn nằm trên đường thẳng $OI$ sao cho $OF=3OI$ và I nằm giữa $OF$

c)

\(4\overrightarrow{KA}+3\overrightarrow{KB}+2\overrightarrow{KC}+\overrightarrow{KD}=0\)

\(\Leftrightarrow 4\overrightarrow{KO}+4\overrightarrow{OA}+3\overrightarrow{KO}+3\overrightarrow{OB}+2\overrightarrow{KO}+2\overrightarrow{OC}+\overrightarrow{KO}+\overrightarrow{OD}=0\)

\(\Leftrightarrow 10\overrightarrow{KO}+2\overrightarrow{OA}+\overrightarrow{OB}=0\)

\(\Leftrightarrow 5\overrightarrow{KO}+\overrightarrow{OA}+\overrightarrow{OB}=0\)

Lấy $I$ là trung điểm của AB thì \(\overrightarrow{IA}+\overrightarrow{IB}=0\)

\(\Rightarrow 0=5\overrightarrow{KO}+\overrightarrow{OA}+\overrightarrow{OB}=5\overrightarrow{KO}+\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}\)

\(\Leftrightarrow 0=5\overrightarrow{KO}+2\overrightarrow{OI}\Leftrightarrow 5\overrightarrow{OK}=2\overrightarrow{OI}\)

Do đó điểm K nằm trên đoạn thẳng OI sao cho $5OK=2OI$

luu thi phuong
27 tháng 8 2017 lúc 11:05

giúp mình nhá mình cần ngay cảm ơn mọi người


Các câu hỏi tương tự
Mai Trang Nguyễn Thị
Xem chi tiết
booboo
Xem chi tiết
2006
Xem chi tiết
booboo
Xem chi tiết
5.Trần Nguyên Chương
Xem chi tiết
Katty Phươngg
Xem chi tiết
Gia Hân
Xem chi tiết
TẤN LỰC
Xem chi tiết
Út Duyên
Xem chi tiết