\(2^{x+1}+2^{x+2}+2^{x+3}=448\)
=>\(2^x.2+2^x.4+2^x.8=448\)
=>\(2^x\left(2+4+8\right)=448\)
=>\(2^x=32\)
=>\(2^x=2^5\)
=>\(x=5\)
Vậy...
ta có : \(2^{x+1}+2^{x+2}+2^{x+3}=448\) \(\Leftrightarrow2^{x+1}\left(1+2+2^2\right)=448\)
\(\Leftrightarrow2^{x+1}\left(1+2+4\right)=448\Leftrightarrow2^{x+1}.7=448\Leftrightarrow2^{x+1}=\dfrac{448}{7}\)
\(\Leftrightarrow2^{x+1}=64\Leftrightarrow2^{x+1}=2^6\Rightarrow x+1=6\Leftrightarrow x=6-1=5\)
vậy \(x=5\)
\(2^{x+1}+2^{x+2}+2^{x+3}=448\)
\(\Leftrightarrow2^x.2+2^x.2^2+2^{^{ }x}.2^3=448\)
\(\Leftrightarrow2^x.2+2^{^{ }x}.4+2^x.8=448\)
\(\Leftrightarrow2^x.\left(2+4+8\right)=448\)
\(\Leftrightarrow2^x.14=448\)
\(\Leftrightarrow2^x=448:14\)
\(\Leftrightarrow2^x=32=2^5\)
\(\Leftrightarrow x=5\)(do x \(\ne\pm1;0\))
Vậy .....
Chúc các bạn học tốt !!!