\(1,\\ a,=3x^2y-2xy^2-2xy^2=3x^2y-4xy^2\\ b,=\left(x+2\right)^2:\left(x+2\right)=x+2\\ c,=\dfrac{2}{x}\\ 2,\\ 1,\\ a,=2\left(x^2-2x+1\right)=2\left(x-1\right)^2\\ b,=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\\ 2,\\ a,\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\\ 3,\\ a,ĐK:x\ne\pm1\\ b,A=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\\ c,A=2\Leftrightarrow\dfrac{x+1}{x-1}=2\Leftrightarrow x+1=2x-2\Leftrightarrow x=3\left(tm\right)\)