ta có a.(a2 - 1).(a2 + 1) (*)
Ở đây áp dụng hằng đẳng thức a2 - 1 = (a-1).(a+1).
Tiếp tục:
(*) = a.(a-1).(a+1).(a2+1)
Ta nhận thấy trong 3 thừa số a, a-1, a+1 thì có 1 số chia hết cho 3 vì đây là 3 số tự nhiên liên tiếp.
Trong 3 số đó cũng phải có một số chẵn nên tích của chúng chia hết cho 2.
Vì 2 và 3 nguyên tố cùng nhau nên tích 3 số đó sẽ chia hết cho 6.
Bây giờ ta chứng minh (*) chia hết cho 5 như sau:
Nếu n chia hết cho 5 thì dĩ nhiên (*) chia hết cho 5.
Nếu n chia cho 5 dư 1 hoặc dư 4 thì dĩ nhiên n-1 hoặc n+4 tương ứng sẽ chia hết cho 5.
Nếu n chia cho 5 dư 2 hoặc 3 thì n có dạng :
a 5k+2 hoặc 5k + 3
Khi đó a2 +1 :
Hoặc bằng: (5k+2)^2 +1 = 25k^2 + 20k +4 + 1= 5(5k^2 + 4k +1) , dĩ nhiên nó chia hết cho 5.
Hoặc bằng: (5k+2)^2 +1 = 25k^2 + 30k +9 + 1= 5(5k^2 + 6k +2) , dĩ nhiên nó cũng chia hết cho 5.
Ở đây ta áp dụng hằng đẳng thức : (a+b)^2 = a^2 + 2ab + b^2
Vậy với mọi trường hợp khi n chia cho 5 có số dư là bao nhiêu, thì (*) cũng chia hết cho 5.
(*) chia hết cho 5 và cho 6, mà 5 và 6 nguyên tố cùng nhau nên (*) chia hết cho 30.