\(A=1+2+4+8+...+2^{100}\)
\(=2^0+2^1+2^2+...+2^{100}\)
\(=2^0+\left(2^1+2^2+...+2^{100}\right)\)
\(=1+\left[\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\right]\)
\(=1+\left[2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\right]\)
\(=1+\left[2\cdot3+2^3\cdot3+...+2^{99}\cdot3\right]\)
\(=1+3\left(2+2^3+...+2^{99}\right)\)
\(3\left(2+2^3+...+2^{99}\right)⋮3\)
=>\(A=1+3\left(2+2^3+...+2^{99}\right)\) chia 3 dư 1