Bài 5:
\(\frac{2^{13}.9^4}{6^7.8^3}=\frac{2^{13}.\left(3^3\right)^4}{\left(2.3\right)^7.\left(2^3\right)^3}=\frac{2^{13}.3^{12}}{2^7.3^7.2^9}=\frac{2^{13}.3^5}{2^7.2^9}=\frac{3^5}{2^3}=\frac{243}{8}\)
a/ Vì A \(\in\) đường trung trực của BC
=> AB = AC
Xét \(\Delta AIB\) và \(\Delta AIC\) có:
AI: Cạnh chung
IB = IC (gt)
AB = AC (cmt)
=> \(\Delta AIB=\Delta AIC\left(c-c-c\right)\left(đpcm\right)\)
b/ Xét 2 \(\Delta\) vuông: \(\Delta IBH\) và \(\Delta ICK\) có:
IB = IC (gt)
\(\widehat{ABC}=\widehat{ACB}\) (2 góc tương ứng do \(\Delta AIB=\Delta AIC\) )
=> \(\Delta IBH=\Delta ICK\) (cạnh huyền-góc nhọn)
=> BH = CK (2 cạnh tương ứng)
Có: AH + BH = AB
AK + CK = AC
mà AB = AC (đã cm) ; BH = CK (cmt)
=> AH = AK
=> \(\Delta AHK\) cân (đpcm)
c/ Ta có:
\(\Delta ABC\) cân (AB = AC)
\(\Delta AHK\) cân (ý b)
mà \(\widehat{A}\) chung
=> \(\widehat{B}=\widehat{H}=\widehat{C}=\widehat{K}\)
Vì \(\widehat{B}=\widehat{H}\) (cmt)
mà 2 góc này lại ở vị trí đồng vị nên
=> HK // BC (đpcm)