\(1,Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne1\right)\\ Q=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\\ Q=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{2}{x-1}\)
\(2,\left|Q\right|>-Q\Leftrightarrow Q>0\Leftrightarrow\dfrac{2}{x-1}>0\Leftrightarrow x-1>0\left(2>0\right)\\ \Leftrightarrow x>1\)












