Khi mắc R1= 20\(\Omega\)
\(I=I_1=\frac{U_1}{R_1}=\frac{40}{20}=2\left(A\right)\)
\(\Rightarrow U_{MN}=I.\left(R_1+R\right)=2.\left(20+R\right)\)
\(\Leftrightarrow40+2R=U_{MN}\) (1)
Tương tự khi mắc R1= 30\(\Omega\)
\(U_{MN}=I'.\left(R_2+R\right)=1,5.\left(30+R\right)\)
\(\Leftrightarrow45+1,5R=U_{MN}\) (2)
Từ (1) và (2) có hpt:
\(\left\{{}\begin{matrix}40+2R=U_{MN}\\45+1,5R=U_{MN}\end{matrix}\right.\Leftrightarrow R=10\left(\Omega\right)\)
\(\Rightarrow U_{MN}=40+2.10=60\left(V\right)\)