\(\lim\limits\frac{3-16.4^n}{2^n+3.4^n}=\lim\limits\frac{3\left(\frac{1}{4}\right)^n-16}{\left(\frac{2}{4}\right)^n+3}=-\frac{16}{3}\)
\(\lim\limits\frac{3-16.4^n}{2^n+3.4^n}=\lim\limits\frac{3\left(\frac{1}{4}\right)^n-16}{\left(\frac{2}{4}\right)^n+3}=-\frac{16}{3}\)
tìm các giới hạn sau:
a, \(\lim\limits_{x\rightarrow-3}\frac{x+\sqrt{3-2x}}{x^2+3x}\)
b, \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+9}+\sqrt{x+16}-7}{x}\)
c, \(\lim\limits_{x\rightarrow\frac{1}{2}}\frac{8x^2-1}{6x^2-5x+1}\)
d, \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{4-\sqrt{x^2+16}}\)
tìm các giới hạn sau:
a, lim\(\frac{2^{5n+1}+3}{3^{5n+2}+1}\)
b, lim\(\frac{\left(-1\right)^n+4.3^n}{\left(-1\right)^{n+1}-2.3^n}\)
c, lim \(\left(1+n^2-\sqrt{n^4+n}\right)\)
d, lim \(\frac{2cosn^2}{n^2+1}\)
e, lim \(\left(\sqrt{n^2-2}-\sqrt[3]{n^3+2n}\right)\)
tìm các giới hạn sau
a,\(lim\frac{\left(n^2+1\right)\left(2n+3\right)}{\sqrt{n^4-n^2+1}}\)
b, lim\(\frac{\left(-3^n-6^n\right)}{\left(-3\right)^{n+1}-5^{n+1}}\)
c,lim\(\left(\sqrt{n^4+1}+n-1\right)\)
d, \(\sqrt[3]{1+2n-n^3}\)
tìm các giới hạn sau:
a; lim\(\frac{1+2+3+...+n}{3n^3}\)
b, lim \(\left(\frac{n+2}{n+1}+\frac{sin\text{n}}{2^n}\right)\)
c, lim \(\left(\sqrt{n^2-3n}-\sqrt{n^2+1}\right)\)
d,\(lim\left(\sqrt[3]{n^3+3n^2}-n\right)\)
tìm các giới hạn sau:
a, \(\lim\limits_{x\rightarrow1}\frac{x^4-1}{x^3-2x^2+1}\) ( câu a,b chỉ cần thay số vào thôi đúng k ạ nếu là thay số thì k cần trình bày nữa đâu )
b, \(\lim\limits_{x\rightarrow-1}\frac{x^5+1}{x^3+1}\)
c, \(\lim\limits_{x\rightarrow3}\frac{x^3-5x^2+3x+9}{x^4-8x^2-9}\)
d, \(\lim\limits_{x\rightarrow1}\frac{x-5x^5+4x^6}{\left(1-x\right)^2}\)
e, \(\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}\)
f, \(\lim\limits_{x\rightarrow-2}\frac{x^4-16}{x^3+2x^2}\)
giới hạn \(lim\sqrt{\frac{3x^4+4x^5+2}{9x^5+5x^4+4}}\left(x\rightarrow+\infty\right)\) bằng :
A. 0
B. 2/3
C. \(\sqrt{\frac{5}{3}}\)
D. \(\sqrt{\frac{1}{3}}\)
giới hạn \(lim\frac{7\sqrt{3n^2+n}}{2\left(3n+2\right)}=\frac{a\sqrt{3}}{b}\) (a/b tối giản ) có a+b bằng
A. 13
B. 19
C. 51
D. 21
tìm các giới hạn sau:
a; \(\lim\limits_{x\rightarrow1}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}\)
b; \(\lim\limits_{x\rightarrow1}\frac{x^3-3x^2+2}{x^4-4x+3}\)
c; \(\lim\limits_{x\rightarrow1}\frac{x^3-2x-1}{x^5-2x-1}\)
d; \(\lim\limits_{x\rightarrow-1}\frac{\left(x+2\right)^2-1}{x^2-1}\)
1) lim \(\frac{3n^2+5n+4}{2-n^2}\)
2) lim \(\frac{2n^3-4n^2+3n+7}{n^3-7n+5}\)
3) lim \(\left(\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1}\right)\)
4) lim \(\frac{1+3^n}{4+3^n}\)
5) lim \(\frac{4.3^n+7^{n+1}}{2.5^n+7^n}\)