Gieo đồng thời hai con xúc xắc cân đối và đồng chất I và II. Tính xác suất của các biến cố sau:
G: “Không có con xúc xắc nào xuất hiện mặt 6 chấm”;
H: “Số chấm xuất hiện trên con xúc xắc I là số lẻ và số chấm xuất hiện trên con xúc xắc II lớn hơn 4”;
K: “Số chấm xuất hiện trên cả hai con xúc xắc lớn hơn 2”.
Kết quả phép thử được viết dưới dạng (a, b) trong đó a, b lần lượt là số chấm xuất hiện trên hai con xúc xắc I và II.
Ta có bảng miêu tả không gian mẫu là:
Do đó, số phần tử của không gian mẫu \(\Omega \) là 36.
Vì gieo đồng thời hai con xúc xắc cân đối, đồng chất nên các kết quả có thể xảy ra là đồng khả năng.
Có 25 kết quả thuận lợi của biến cố G là: (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (1, 5), (2, 5), (3, 5), (4, 5), (5, 5).
Do đó, \(P\left( G \right) = \frac{{25}}{{36}}\).
Có 6 kết quả thuận lợi của biến cố H là: (1, 5), (1, 6), (3, 5), (3, 6), (5, 5), (5, 6) nên \(P\left( H \right) = \frac{6}{{36}} = \frac{1}{6}\).
Có 16 kết quả thuận lợi của biến cố K là: (3, 3), (4, 3), (5, 3), (6, 3), (3, 4), (4, 4), (5, 4), (6, 4), (3, 5), (4, 5), (5, 5), (6, 5), (3, 6), (4, 6), (5, 6), (6, 6). Do đó, \(P\left( K \right) = \frac{{16}}{{36}} = \frac{4}{9}\).