\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
Thay dữ kiện đề bài cho vào biểu thức ta có:
\(\left(-6\right)^2=14+2\cdot7\)\(\Leftrightarrow36=14+14\Leftrightarrow36=28\)(vô lý)
Vậy hpt vô nghiệm
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
Thay dữ kiện đề bài cho vào biểu thức ta có:
\(\left(-6\right)^2=14+2\cdot7\)\(\Leftrightarrow36=14+14\Leftrightarrow36=28\)(vô lý)
Vậy hpt vô nghiệm
\(\left\{{}\begin{matrix}\dfrac{xy}{x+y}=2\\\dfrac{yz}{y+z}=4\\\dfrac{zx}{z+x}=3\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x+y+z=9\\x^2+y^2+z^2=27\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y=2\\y-3z=2\\-3x-2y+z=-2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}5y-5x=xy\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\\\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{1}{2x-3y}+\dfrac{5}{3x+y}=\dfrac{5}{8}\\\dfrac{3}{2x-3y}-\dfrac{5}{3x+y}=-\dfrac{3}{8}\\\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y=2\\y-3z=2\\-3x-2y+z=-2\end{matrix}\right.\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}3\sqrt{x}+2\sqrt{y}=6\\\sqrt{x}-\sqrt{y}=4,5\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\)
Giải các hệ phương trình sau
a,\(\left\{{}\begin{matrix}\sqrt{3}x-y=\sqrt{2}\\x-\sqrt{2}y=\sqrt{3}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}5\left(x-y\right)-3\left(2x+3y\right)=12\\3\left(x+2y\right)-4\left(x+2y\right)=5\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}\dfrac{x+2}{y-1}=\dfrac{x-4}{y+2}\\\dfrac{2x+3}{y-1}=\dfrac{4x+1}{2y+1}\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2+z^2=1\\x^2+y^2-2xy+2yz-2zx+1=0\end{matrix}\right.\)
Phần thưởng là 3GP nhé.
Giải hệ phương trình:
a,\(\left\{{}\begin{matrix}\text{2 x − 7 y = 20 }\\\text{3 x + 7 y = − 5}\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\text{2 x + 3 y = 8 }\\\text{− 3 x + 5 y = 7 }\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}-2x+\frac{1}{2}y=3\\\text{5 x + 3 y = 11 }\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}\text{( x − 16 )( y + 6 ) = x y − 36 }\\\text{( x + 8 )( y − 3 ) = x y − 54 }\end{matrix}\right.\)
e,\(\left\{{}\begin{matrix}\text{3 x − | y | = 1 }\\\text{5 x + 3 y = 11 }\end{matrix}\right.\)
f,\(\left\{{}\begin{matrix}\frac{3}{x}+\frac{4}{y}=5\\\frac{1}{x}-\frac{1}{y}=1\end{matrix}\right.\)
g,\(\left\{{}\begin{matrix}x+2\sqrt{y-1}=3\\3x+4\sqrt{y-1}=7\end{matrix}\right.\)
Giúp mình với ạ!!!
giải hệ phương trình:
a,\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)=\dfrac{1}{2}xy+50\\\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=\dfrac{1}{2}xy-32\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\dfrac{-1}{2}x+\dfrac{1}{3}y=0\\y-x=1\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x\left(y-2\right)=\left(x+2\right)\left(y-4\right)\\\left(x-3\right)\left(2y+7\right)=\left(2x-7\right)\left(y+3\right)\end{matrix}\right.\)