tìm m để pt có nghiệm (m là tham số, m\(\in\)R)
\(a,mx-x-m+2=0\)
\(b,m^2\left(x-2\right)+m\left(x+3\right)=2\left(3x-1\right)\)
\(c,m^2x+3mx-m^2+9=0\)
\(d,m^2x-m^2-4=4m\left(x-1\right)\)
a) giải và biện luận : ( m - 2)x ≥ ( 2m - 1)x - 3 ( m là tham số)
b) \(\dfrac{m\left(x-2\right)}{6}+\dfrac{x-m}{3}>\dfrac{x+1}{2}\) ( m là tham số )
Tìm điều kiện của tham số m để phương trình: \(\left(m^2-4\right)x^2+\left(m-2\right)x+3=0\) là pt bậc nhất một ẩn
cho pt: (m+1)x2 -(2m+3)x + m+ 4 = 0 với m là tham số
a) giải pt khi m = -1
b) tìm tất cả các gtri của m để pt có nghiệm
Tìm m để 2 phương trình sau tương đương: PT(1): \(\left(x+3\right)^4+\left(x+5\right)^4=16\)
PT(2): \(x^2-\left(3-2m\right)x-6m=0\)
Giải và biện luận phương trình với m là tham số:
a) \(m^2\left(x-2\right)-3m=x+1\)
b) \(\dfrac{mx+5}{10}+\dfrac{x+m}{4}=\dfrac{m}{20}\)
a) \(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}\) = \(\frac{19}{49}\)
b) Tìm m để PT sau có nghiệm duy nhất:
\(\frac{2m-1}{x-1}\) = m - 2 (m là tham số)
Tìm x:
\(\text{a)}5x\left(x-4\right)-x^2+16=0\)
\(\text{b)}x^2-4x+3=0\)
Cho 2 phương trình: \(\dfrac{x-2013}{2011}+\dfrac{x-2011}{2009}=\dfrac{x-2009}{2007}+\dfrac{x-2007}{2005}\left(1\right)\) và \(\dfrac{x^2-\left(2-m\right)x-2m}{x-1}=0\left(2\right)\) ( Với m là tham số). Với phương trình nào của m thì 2 phương trình đã cho tương đương