(x-1)\(^3\)+ (2x+3)\(^3\)= (3x+2)\(^3\)
Đặt x-1 = a (a thuộc N*) (1)
2x + 3 =b ( b thuộc N*) (2)
=> (x-1) + (2x+3) = 3x+2
Ta có a\(^3\)+ b\(^3\)=( a+b)\(^3\)
=> a\(^3\) + b\(^3\)= a\(^3\)+ 3a\(^2\)b + 3ab\(^2\)+ b\(^3\)
=> 3a\(^2\)b + 3ab\(^2\)=0
=> 3ab(a+b) = 0
=> a=0 hoặc b = 0
+) Thay a=0 vào (1), ta có: x-1=0 <=> x=1
+) Thay b=0 vào (2) ta có 2x+3 =0 <=> x=\(\dfrac{-3}{2}\)
Vậy nghiệm của pt là 1; \(\dfrac{-3}{2}\)