điều kiện : \(\left\{{}\begin{matrix}x\ge\dfrac{-3}{2}\\\left[{}\begin{matrix}x\le\dfrac{-3}{2}\\x\ge\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{2}\\x\ge\dfrac{3}{2}\end{matrix}\right.\)
ta có : \(\sqrt{4x^2-9}=2\sqrt{2x+3}\Leftrightarrow4x^2-9=4\left(2x+3\right)\)
\(\Leftrightarrow4x^2-14x+6x-21=0\Leftrightarrow2x\left(2x-7\right)+3\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\2x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\)
vậy \(x=\dfrac{-3}{2}\overset{.}{,}x=\dfrac{7}{2}\)