\(x^2+2x+1-\left(x+1\right)+2\sqrt{x+1}.6-36=0\)
\(\left(x+1\right)^2-\left(\sqrt{x+1}-6\right)^2=0\)
\(\left(x-\sqrt{x+1}+7\right)\left(x+\sqrt{x+1}-5\right)=0\)
\(\left[{}\begin{matrix}x-\sqrt{x+1}+7=0\\x+\sqrt{x+1}-5=0\end{matrix}\right.\)
\(x^2+2x+1-\left(x+1\right)+2\sqrt{x+1}.6-36=0\)
\(\left(x+1\right)^2-\left(\sqrt{x+1}-6\right)^2=0\)
\(\left(x-\sqrt{x+1}+7\right)\left(x+\sqrt{x+1}-5\right)=0\)
\(\left[{}\begin{matrix}x-\sqrt{x+1}+7=0\\x+\sqrt{x+1}-5=0\end{matrix}\right.\)
Giải pt:
\(\left(\sqrt{x+6}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+4x-12}\right)=8\)
Giải pt : \(\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}=28-4\sqrt{x-2}-\sqrt{y-1}\)
giải pt :
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b0 \(4\sqrt{x+1}=x^2-5x+14\)
c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)
d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)
Giải các PT sau:
a)\(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)
b)\(\sqrt[3]{x+1}+\sqrt[3]{x^2}=\sqrt[3]{x}+\sqrt[3]{x^2+x}\)
giải pt vô tỉ sau :
a) \(\sqrt{x+2+2\sqrt{x+1}}\) + \(\sqrt{x+10-6\sqrt{x+1}}\) = 2\(\sqrt{x+2-2\sqrt{x+1}}\)
b) x + \(\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}\)= 2
giải pt sau
\(\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}+1}-\dfrac{2}{\sqrt{x}}\right):\dfrac{2-\sqrt{x}}{x-1}\)
Giải pt:
\(x^3+\left(x+1\right)\sqrt{x+1}+2\sqrt{2}=\left(x+\sqrt{x+1}+\sqrt{2}\right)^3\)
giải pt: a) \(\sqrt{x+1}+\sqrt{5x}=\sqrt{4x-3}+\sqrt{2x+4}\)
b) \(\left(x-1\right)\left(x+2\right)+2\sqrt[]{x^2+x+1}=0\)
giải pt:\(\sqrt{x-1+2\sqrt{x-2}}-\sqrt{x-1-2\sqrt{x-2}}=1\)