a, ĐK:\(x^2-4x+3\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\3\le x\end{matrix}\right.\)
\(PT\Leftrightarrow x\sqrt{x^2-4x+3}=x\left(x+1\right)\)
Với x = 0 \(\Rightarrow pttm\)
Với \(x\ne0\) \(\Rightarrow\sqrt{x^2-4x+3}=x+1\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x+3=x^2+2x+1\end{matrix}\right.\)\(\Rightarrow x=\frac{1}{3}\left(tm\right)\)
b,ĐK: \(-\sqrt{10}\le x\le\sqrt{10}\)
\(PT\Leftrightarrow\left(x-3\right)\left(x+4\right)-\left(x-3\right)\sqrt{10-x^2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x+4-\sqrt{10-x^2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x+4=\sqrt{10-x^2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x^2+8x+16=10-x^2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2+4x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\end{matrix}\right.\)(tm)
c/ ĐKXĐ: \(-2\le x\le3\)
\(\Leftrightarrow\left(x+4\right)\sqrt{6+x-x^2}-\left(2x+5\right)\sqrt{6+x-x^2}=0\)
\(\Leftrightarrow\sqrt{6+x-x^2}\left(x+4-2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+x+6=0\\-x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\\x=3\end{matrix}\right.\)
d/ ĐKXĐ: \(3< x\le4\)
\(\Leftrightarrow\sqrt{-x^2+x+12}\left(\frac{1}{\sqrt{2x+9}}-\frac{1}{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+x+12=0\\\sqrt{2x+9}=x+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+x+12=0\\2x+9=x^2+6x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+x+12=0\\x^2+4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\x=4\\x=0\\x=-4\left(l\right)\end{matrix}\right.\)
e/ ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{x}\left(x+\sqrt{x^2+x+2}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\Rightarrow x=0\\\sqrt{x^2+x+2}=3-x\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}3-x\ge0\\x^2+x+2=\left(3-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le3\\7x=7\end{matrix}\right.\) \(\Rightarrow x=1\)