Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

giải pt

a) \(\left|x^2-5x-4\right|=\left|x^2-4\right|\)

b) \(\left|x-1\right|+3\left|x-3\right|=6\)

c) \(\left|\frac{x^2-6x-4}{x^2-4}\right|=1\)

d) \(\left|x-1\right|-2\left|x-2\right|=x^2-x-3\)

Nguyễn Việt Lâm
7 tháng 11 2019 lúc 16:02

a/

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-4=x^2-4\\x^2-5x-4=4-x^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-5x=0\\2x^2-5x-8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5\pm\sqrt{89}}{4}\\\end{matrix}\right.\)

b/ - Với \(x\ge3\) pt trở thành:

\(x-1+3\left(x-3\right)=6\Leftrightarrow4x=16\Rightarrow x=4\)

- Với \(x\le1\) pt trở thành:

\(1-x+3\left(3-x\right)=6\)

\(\Leftrightarrow x=1\)

- Với \(1< x< 3\) pt trở thành:

\(x-1+3\left(3-x\right)=6\)

\(\Leftrightarrow-2x=-2\Rightarrow x=1\) (loại)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 16:07

c/ ĐKXĐ: \(x\ne\pm2\)

\(\left[{}\begin{matrix}\frac{x^2-6x-4}{x^2-4}=1\\\frac{x^2-6x-4}{x^2-4}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-4=x^2-4\\x^2-6x-4=4-x^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-6x=0\\2x^2-6x-8=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=4\end{matrix}\right.\)

d/ - Với \(x\ge2\) pt trở thành:

\(x-1-2\left(x-2\right)=x^2-x-3\)

\(\Leftrightarrow x^2=6\Rightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\left(l\right)\end{matrix}\right.\)

- Với \(x\le1\) pt trở thành:

\(1-x-2\left(2-x\right)=x^2-x-3\) làm tương tự

- Với \(1< x< 2\):

\(x-1-2\left(2-x\right)=x^2-x-3\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Kẹo Ngọt Cây
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Julian Edward
Xem chi tiết
poppy Trang
Xem chi tiết
Julian Edward
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết