Chương 1: MỆNH ĐỀ, TẬP HỢP

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
mai thanh nhàn

giải pt:

19+3x+4\(\sqrt{-x^2-x+6}\) = \(6\sqrt{x-2}+12\sqrt{3+x}\)

Nguyễn Việt Lâm
11 tháng 10 2020 lúc 14:11

Chắc đến 99% là bạn ghi đề ko đúng

Vì pt như thế này thì ĐKXĐ sẽ là:

\(\left\{{}\begin{matrix}-x^2-x+6\ge0\\x-2\ge0\\3+x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le2\\x\ge2\\x\ge-3\end{matrix}\right.\)

\(\Leftrightarrow x=2\) (cả tập xác định có đúng 1 phần tử)

Thay \(x=2\) vào ko thỏa mãn nên pt vô nghiệm

Nguyễn Việt Lâm
11 tháng 10 2020 lúc 15:39

ĐKXĐ: \(-3\le x\le2\)

Đặt \(\sqrt{2-x}+2\sqrt{x+3}=t>0\)

\(\Rightarrow t^2=14+3x+4\sqrt{-x^2-x+6}\) (1)

\(\Rightarrow19+3x+4\sqrt{-x^2-x+6}=t^2+5\)

Pt trở thành:

\(t^2+5=6t\Leftrightarrow t^2-6t+5=0\Rightarrow\left[{}\begin{matrix}t=1\\t=5\end{matrix}\right.\)

Thế vào (1): \(\left[{}\begin{matrix}1=14+3x+4\sqrt{-x^2-x+6}\\25=14+3x+4\sqrt{-x^2-x+6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\sqrt{-x^2-x+6}=-3x-13< 0\left(vn\right)\\4\sqrt{-x^2-x+6}=11-3x\end{matrix}\right.\) (pt đầu vô nghiệm do \(x\ge-3\Rightarrow-3x-13< 0\))

\(\Leftrightarrow16\left(-x^2-x+16\right)=\left(11-3x\right)^2\)

\(\Leftrightarrow25x^2-50x=25=0\)

\(\Leftrightarrow25\left(x-1\right)^2=0\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Thao
Xem chi tiết
Bùi Linh Nhi
Xem chi tiết
dung doan
Xem chi tiết
Nkjuiopmli Sv5
Xem chi tiết
Ly Po
Xem chi tiết
Quang Huy Điền
Xem chi tiết
Bùi Linh Nhi
Xem chi tiết
Anh Trâm
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
Xem chi tiết