Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
illumina

Giải phương trình:

\(\sqrt{3x^2-9x+1}=x-2\)

Gia Huy
6 tháng 7 2023 lúc 13:49

ĐKXĐ: \(\left\{{}\begin{matrix}3x^2-9x+1\ge0\\x\ge2\end{matrix}\right.\)

Khi đó:

\(\sqrt{3x^2-9x+1}=x-2\\ \Leftrightarrow3x^2-9x+1=\left(x-2\right)^2\\ \Leftrightarrow3x^2-9x+1=x^2-4x+4\\ \Leftrightarrow3x^2-9x+1-x^2+4x-4=0\\ \Leftrightarrow2x^2-5x-3=0\\ \Leftrightarrow2x^2+x-6x-3=0\\ \Leftrightarrow x\left(2x+1\right)-3\left(2x+1\right)=0\\ \Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

Thử lại với x = 3 thì \(3x^2-9x+1=3.3^2-9.3+1=1>0\)

 

Vậy PT có nghiệm duy nhất \(S=\left\{3\right\}\)


Các câu hỏi tương tự
Quynh Existn
Xem chi tiết
Quynh Existn
Xem chi tiết
Quynh Existn
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Quynh Existn
Xem chi tiết
Cậu bé nhỏ nhắn
Xem chi tiết
khong có
Xem chi tiết
Lê Cao Cường
Xem chi tiết