Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\):
\(x^2+\frac{1}{x^2}-4\left(x+\frac{1}{x}\right)+5=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\) pt trở thành:
\(t^2-2-4t+5=0\)
\(\Leftrightarrow t^2-4t+3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=1\\x+\frac{1}{x}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\x^2-3x+1=0\end{matrix}\right.\)