Giải phương trình:
1. \(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
2. \(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
3. \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
4. \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)
5. \(\frac{x-4}{5}-\frac{3x-2}{10}-x=\frac{2x-5}{3}-\frac{7x+2}{6}\)
6. \(\frac{\left(x+2\right)\left(x+10\right)}{3}-\frac{\left(x+4\right)\left(x+10\right)}{12}=\frac{\left(x-2\right)\left(x+4\right)}{4}\)
7. \(\frac{\left(x+2\right)^2}{8}-2\left(2x-1\right)=25+\frac{\left(x-2\right)^2}{8}\)
8.\(\frac{7x^2-14x-5}{5}=\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}\)
9. \(\frac{\left(2x-3\right)\left(2x+3\right)}{8}=\frac{\left(x-4\right)^2}{6}+\frac{\left(x-2\right)^2}{3}\)
10. \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
Giải phương trình:
a. \(\frac{x+4}{x^2-3x+2}-\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
b. \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
c. \(\frac{x+2}{3\:\:}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)d. \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
giải phương trình
a, \(\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1}\)
b,\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
c,\(\dfrac{5}{x^2+x-6}-\dfrac{2}{x^2+4x+3}=\dfrac{-3}{2x-1}\)
d, \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
e, \(x^3+x^2+x+1=0\)
Giải phương trình
\(a,\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\)
\(b,\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)
\(c,3\left(x-1\right)+3=5x\)
\(d,\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)
\(e,\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}=-4\)
\(f,\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\)
Em mới học về pt nên chưa quen lắm mọi người giúp e với ạ !Nguyễn Việt Lâm Quản lý
1) giải pt :
a) \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
b) \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)
2) giải pt :
a) \(\left(5x+1\right)^2=\left(3x-2\right)^2\)
b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)
c) \(\left(x+3\right)^4+\left(x+5\right)^4=2\)
d) \(x^4-3x^3+4x^2-3x+1=0\)
bài 1 giải phương trình
a) (2x+3)\(^2\)-3(x-4)(x+4)=\(\left(x-2\right)^2\)+1
b)(3x-2) (9x\(^2\)+6x+4)-(3x-1) (9x\(^2\)+3x+1)=x-4
c)x (x-1) -(x-3) (x+4)=5x
d) (2x+1)(2x-1)=4x(x-7)-3x
bài 2 giải phương trình
a)\(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)
b)\(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}+\frac{12-x}{9}\)
c)\(\frac{10x+3}{8}=\frac{7-8x}{12}\)
d)\(\frac{x+4}{5}-x-5=\frac{x+3}{3}-\frac{x-2}{2}\)
Dạng 1: Phương trình bậc nhất
Bài 1: Giải các phương trình sau :
a) 0,5x (2x - 9) = 1,5x (x - 5)
b) 28 (x - 1) - 9 (x - 2) = 14x
c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x
d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2
e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)
f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)
g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)
h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)
i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)
j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)
Dạng 2: Phương trình tích
Bài 2: Giải phương trình sau :
a) (x + 1) (5x + 3) = (3x - 8) (x - 1)
b) (x - 1) (2x - 1) = x(1 - x)
c) (2x - 3) (4 - x) (x - 3) = 0
d) (x + 1)2 - 4x2 = 0
e) (2x + 5)2 = (x + 3)2
f) (2x - 7) (x + 3) = x2 - 9
g) (3x + 4) (x - 4) = (x - 4)2
h) x2 - 6x + 8 = 0
i) x2 + 3x + 2 = 0
j) 2x2 - 5x + 3 = 0
k) x (2x - 7) - 4x + 14 = 9
l) (x - 2)2 - x + 2 = 0
Dạng 3: Phương trình chứa ẩn ở mẫu
Bài 3: Giải phương trình sau :
\(\frac{90}{x}-\frac{36}{x-6}=2\) | \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\) |
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) | \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) |
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) | \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\) |
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) | \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\) |