\(\sqrt{x}+\sqrt{1-x}+\sqrt{x+1}=2\)
\(\Leftrightarrow\sqrt{x}+\left(\sqrt{1-x}-1\right)+\left(\sqrt{1+x}-1\right)=0\)
\(\Leftrightarrow\sqrt{x}+\dfrac{1-x-1}{\sqrt{1-x}+1}+\dfrac{1+x-1}{\sqrt{1+x}+1}=0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{x}{\sqrt{1-x}+1}+\dfrac{x}{\sqrt{1+x}+1}=0\)
\(\Leftrightarrow\sqrt{x}\left(1-\dfrac{\sqrt{x}}{\sqrt{1-x}+1}+\dfrac{\sqrt{x}}{\sqrt{1+x}+1}\right)=0\)
Pt \(1-\dfrac{\sqrt{x}}{\sqrt{1-x}+1}+\dfrac{\sqrt{x}}{\sqrt{1+x}+1}=0\) vô no
=> x = 0 (nhận)
Đúng 0
Bình luận (1)