ĐKXĐ: \(x\ge\)4
Đặt x - 3 = t ( t \(\ge\) 0)
\(\Rightarrow Pt=\sqrt{t+1}-\sqrt{t}=\sqrt{t-1}\)
\(\Leftrightarrow\sqrt{t+1}=\sqrt{t-1}+\sqrt{t}\)
\(\Leftrightarrow t+1=t-1+t+2\sqrt{t^2-t}\)
\(\Leftrightarrow\)\(2-t=2\sqrt{t^2-t}\)
\(\Leftrightarrow4-4t+t^2=4t^2-4t\) ( t \(\le2\))
\(\Leftrightarrow3t^2=4\)
\(\Leftrightarrow t^2=\dfrac{4}{3}\)
\(\Leftrightarrow t=\pm\dfrac{2\sqrt{3}}{3}\)
\(\Leftrightarrow t=\dfrac{2\sqrt{3}}{3}\) (Vì 0 \(\le\) t \(\le\) 2)
\(\Rightarrow x-3=\dfrac{2\sqrt{3}}{3}\)
\(\Leftrightarrow x=\dfrac{9+2\sqrt{3}}{3}\) (thỏa mãn)
Vậy \(x=\dfrac{9+2\sqrt{3}}{3}\)