giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}+\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=4\end{matrix}\right.\)
Giải phương trình \(\dfrac{3\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\dfrac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{5}\right)}+\dfrac{5\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
1. giải phương trình bậc hai một ẩn
a, 3x2+7x+2=0
b,\(\dfrac{x^2}{3}+\dfrac{4x}{5}-\dfrac{1}{12}\)=0
c\(\left(5-\sqrt{2}\right).x^2-10x+5x+\sqrt{2}=0\)
d,(x-1)(x+2)=70
Giải các phương trình sau:
1. \(\sqrt{x^2-\dfrac{1}{4}+\sqrt{x^2+x+\dfrac{1}{4}}}=\dfrac{1}{2}\left(2x^3+x^2+2x+1\right)\)
2. \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
3. \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
4. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
5. \(x=\left(\sqrt{x}+2\right)\left(1-\sqrt{1-\sqrt{x}}\right)\)
6. \(2\sqrt[3]{2x-1}=x^3+1\)
7. \(\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}=x\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\sqrt{3x}\left(1+\dfrac{1}{x+y}\right)=2\\\sqrt{7y}\left(1-\dfrac{1}{x+y}\right)=4\sqrt{2}\end{matrix}\right.\)
1) Rút gọn biểu thức
P=\(\left(\dfrac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\dfrac{x+2\sqrt{x}+4}{x-1}\right):\left(3+\dfrac{1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+1}\right)\)
Giải BPT: \(\sqrt{x^4+x^2+1}+\sqrt{x.\left(x^2-x+1\right)}\le\sqrt{\dfrac{\left(x^2+1\right)^3}{x}}\)
Giải BPT: \(\sqrt{x^4+x^2+1}+\sqrt{x.\left(x^2-x+1\right)}\le\sqrt{\dfrac{\left(x^2+1\right)^3}{x}}\)
Giải BPT: \(\sqrt{x^4+x^2+1}+\sqrt{x.\left(x^2-x+1\right)}\le\sqrt{\dfrac{\left(x^2+1\right)^3}{x}}\)