Ta có: \(sin^22x=\dfrac{1}{2}\Leftrightarrow\)\(\left[{}\begin{matrix}sin2x=\dfrac{1}{\sqrt{2}}\\sin2x=\dfrac{-1}{\sqrt{2}}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left[{}\begin{matrix}2x=\dfrac{\pi}{4}+k2\pi\\2x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\\\left[{}\begin{matrix}2x=\dfrac{-\pi}{4}+k2\pi\\2x=\dfrac{5\pi}{4}+k2\pi\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{\pi}{8}+k\pi\\x=\dfrac{3\pi}{8}+k\pi\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{-\pi}{8}+k\pi\\x=\dfrac{5\pi}{8}+k\pi\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos4x=\dfrac{1}{2}\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow4x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)