a) (x2-5x+x-5)-x2+6x-3x-7=0
<=> -2x-12=0
<=> x=-6
vậy S=(-6)
b) \(\dfrac{x\left(x-2\right)-\left(2x-1\right)\left(x+3\right)}{x\left(x+3\right)}=\dfrac{11-2x^2}{x\left(x+3\right)}\)
Đk: x \(\ne\) 0,-3
=> \(x^2-2x-\left(2x^2+6x-x-3\right)=11-2x^2\)
<=> \(x^2-2x-2x^2-6x+x+3-11+2x^2=0\)
\(x^2-7x-8=0\)
\(\left(x-8\right)\left(x+1\right)=0\)
=> x=8 hoặc x=-1
a) \(\left(x+1\right)\left(x-5\right)-x\left(x-6\right)=3x+7\)
\(\Leftrightarrow x^2+x-5x-5-x^2+6x=3x+7\)
\(\Leftrightarrow x^2-x^2+x-5x+6x-3x=7+5\)
\(\Leftrightarrow-x=12\)
\(\Leftrightarrow x=-12\)
Vậy phương trình có tập nghiệm \(S=\left\{-12\right\}\)
b) \(\dfrac{x-2}{x+3}-\dfrac{2x-1}{x}=\dfrac{11-2x^2}{x^2+3x}\)
\(\Leftrightarrow\dfrac{\left(x-2\right)x}{\left(x+3\right)x}-\dfrac{\left(2x-1\right)\left(x+3\right)}{x\left(x+3\right)}=\dfrac{11-2x^2}{x^2+3x}\)
\(\Leftrightarrow\dfrac{x^2-2x}{x^2+3x}-\dfrac{2x^2-x+6x-3}{x^2+3x}=\dfrac{11-2x^2}{x^2+3x}\)
\(\Leftrightarrow x^2-2x-2x^2-5x+3=11-2x^2\)
\(\Leftrightarrow x^2-2x^2+2x^2-2x-5x+3-11=0\)
\(\Leftrightarrow x^2-7x-8=0\)
\(\Leftrightarrow x^2-8x+x-8=0\)
\(\Leftrightarrow x\left(x-8\right)+\left(x-8\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-1\\8\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;8\right\}\)
a,\(\left(x+1\right)\left(x-5\right)-x\left(x-6\right)=3x+7\)
\(\Leftrightarrow x^2-5x+x-5-x^2+6x-3x-7=0\)
\(\Leftrightarrow x-12=0\)
\(\Leftrightarrow x=12\)
b,\(\dfrac{x-2}{x+3}-\dfrac{2x-1}{x}=\dfrac{11-2x^2}{x^2+3x}\)
ĐKXĐ:\(x^2+3x\ne0\Leftrightarrow x\left(x+3\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-3\end{matrix}\right.\)
Ta có : MTC : \(x^2+3x\)
\(\Leftrightarrow x\left(x-2\right)-\left(x+3\right)\left(2x-1\right)=11-2x^2\)
\(\Leftrightarrow x^2-2x-2x^2+x-6x+3-11+2x^2=0\)
\(\Leftrightarrow x^2-7x-8=0\)
\(\Leftrightarrow x^2+x-8x-8=0\)
\(\Leftrightarrow x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)(Thỏa mãn điều kiện xác định)
Quên mất mình thiếu ĐKXĐ của phần b
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x\ne-3\end{matrix}\right.\)