Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ly nguyễn gia

Giải phương trình sau

1) x3+1=2\(\sqrt[3]{2x-1}\)

2) 2(x2+2)=5\(\sqrt{x^3+1}\)

3) \(\sqrt[3]{\left(3x+1\right)^2}\)+\(\sqrt[3]{\left(3x-1\right)^2}\)+\(\sqrt[3]{9x^2-1}\)=1

4)2( x2-3x+2) =3\(\sqrt{x^3+8}\)

5)\(\sqrt{\frac{1}{2}-x}\)+\(\sqrt{\frac{1}{2}+x}\)=1

6) \(\sqrt{x-1}\)+\(\sqrt{x^3+x^2+x+1}\)=1+\(\sqrt{x^4-1}\)

7) (2x+7)\(\sqrt{2x+7}\)=x2+9x+7

8) \(\sqrt[3]{x+10}\)+\(\sqrt[3]{17-x}\)=3

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 10:19

1.

Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3+1=2x\)

Ta được hệ: \(\left\{{}\begin{matrix}x^3+1=2a\\a^3+1=2x\end{matrix}\right.\)

\(\Rightarrow x^3-a^3=2\left(a-x\right)\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+a^2+ax\right)+2\left(x-a\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+a^2+ax+2\right)=0\)

\(\Leftrightarrow x-a=0\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{2x-1}\)

\(\Leftrightarrow x^3-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 10:22

2.

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow2\left(x^2+2\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

\(\Leftrightarrow2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=2\sqrt{x^2-x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+4=x^2-x+1\\x+1=4x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-3=0\\4x^2-5x+3=0\end{matrix}\right.\) \(\Leftrightarrow...\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 10:33

5.

ĐKXĐ: \(-\frac{1}{2}\le x\le\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}-x+\frac{1}{2}+x+2\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=1\)

\(\Leftrightarrow\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

6.

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x^2-1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}-\sqrt{x-1}-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\left(vn\right)\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 10:25

3.

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{3x+1}=a\\\sqrt[3]{3x-1}=b\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}a^2+b^2+ab=1\\a^3-b^3=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2+ab=1\\\left(a-b\right)\left(a^2+b^2+ab\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2+ab=1\\a-b=2\end{matrix}\right.\)

\(\Rightarrow\left(b+2\right)^2+b^2+b\left(b+2\right)=1\)

\(\Leftrightarrow3b^2+6b+3=0\)

\(\Leftrightarrow b=-1\Rightarrow a=1\)

\(\Rightarrow\sqrt[3]{3x+1}=1\Rightarrow x=0\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 10:28

4.

ĐKXĐ: \(x\ge-2\)

\(\Leftrightarrow2\left(x^2-3x+2\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2x+4}=a>0\\\sqrt{x+2}=b\ge0\end{matrix}\right.\)

\(\Leftrightarrow2\left(a^2-b^2\right)=3ab\)

\(\Leftrightarrow2a^2-3ab-2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)

\(\Leftrightarrow a-2b=0\Leftrightarrow a=2b\)

\(\Leftrightarrow\sqrt{x^2-2x+4}=2\sqrt{x+2}\)

\(\Leftrightarrow x^2-2x+4=4x+8\)

\(\Leftrightarrow x^2-6x-4=0\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 10:41

7.

ĐKXĐ: \(x\ge-\frac{7}{2}\)

\(\Leftrightarrow x^2+9x+7-\left(2x+7\right)\sqrt{2x+7}=0\)

\(\Leftrightarrow-x^2+2x+7+\left(2x+7\right)\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow-x^2+2x+7+\frac{\left(2x+7\right)\left(x^2-2x-7\right)}{x+\sqrt{2x+7}}=0\)

\(\Leftrightarrow\left(-x^2+2x+7\right)\left(1-\frac{2x+7}{x+\sqrt{2x+7}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+2x+7=0\Leftrightarrow x=...\\2x+7=x+\sqrt{2x+7}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x+7=\sqrt{2x+7}\)

\(\Leftrightarrow x^2+14x+49=2x+7\)

\(\Leftrightarrow x^2+12x+42=0\) (vô nghiệm)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 10:45

8.

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+10}=a\\\sqrt[3]{17-x}=b\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}a+b=3\\a^3+b^3=27\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\\left(a+b\right)\left(a^2+b^2-ab\right)=27\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\a^2+b^2-ab=9\end{matrix}\right.\)

\(\Rightarrow a^2+\left(3-a\right)^2-a\left(3-a\right)-9=0\)

\(\Leftrightarrow3a^2-9a=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{x+10}=0\\\sqrt[3]{x+10}=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-10\\x=17\end{matrix}\right.\)


Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
Phạm Dương Ngọc Nhi
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Nguyễn Trọng Chiến
Xem chi tiết
Coodinator  Huy Toàn
Xem chi tiết
Thánh cao su
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
blinkjin
Xem chi tiết
Kim Trí Ngân
Xem chi tiết